Nuprl Lemma : Euclid-Prop19-lemma2

e:EuclideanPlane. ∀a,b,c,d,f:Point.  (a bc  cbd < abd  a=d=c  a-f-c  cbf ≅a abf  |af| < |cf|)


Proof




Definitions occuring in Statement :  geo-lt-angle: abc < xyz geo-cong-angle: abc ≅a xyz geo-lt: p < q geo-length: |s| geo-mk-seg: ab euclidean-plane: EuclideanPlane geo-lsep: bc geo-midpoint: a=m=b geo-strict-between: a-b-c geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T basic-geometry-: BasicGeometry- guard: {T} and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] basic-geometry: BasicGeometry prop: subtype_rel: A ⊆B uimplies: supposing a exists: x:A. B[x] geo-out: out(p ab) geo-midpoint: a=m=b uiff: uiff(P;Q) geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False select: L[n] cons: [a b] subtract: m geo-strict-between: a-b-c geo-lt: p < q squash: T true: True iff: ⇐⇒ Q rev_implies:  Q euclidean-plane: EuclideanPlane
Lemmas referenced :  geo-equilateral-exists lsep-all-sym geo-cong-angle_wf geo-strict-between_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-midpoint_wf geo-lt-angle_wf geo-lsep_wf geo-point_wf geo-out_weakening lsep-implies-sep geo-eq_weakening geo-midpoint-implies-between geo-out-interior-point-exists Euclid-Prop19-lemma2_1 euclidean-plane-axioms geo-sep-sym geo-cong-angle-symm2 geo-cong-angle-transitivity geo-congruent-refl geo-strict-between-implies-between geo-congruent-iff-length geo-length-flip geo-sas2 lsep-symmetry colinear-lsep-cycle geo-strict-between-sep2 geo-colinear-is-colinear-set geo-strict-between-implies-colinear length_of_cons_lemma istype-void length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than geo-cong-angle-preserves-lt-angle geo-cong-angle-preserves-lt-angle2 midpoint-sep geo-between-implies-colinear lt-angle-implies-between-if-out geo-between-implies-out3 geo-between-symmetry geo-between-exchange3 geo-congruent-symmetry geo-congruent-sep geo-strict-between-sep1 geo-strict-between-sep3 geo-add-length-between geo-le_wf iff_weakening_equal geo-le-same geo-sep_wf geo-add-length_wf geo-length_wf geo-mk-seg_wf geo-lt_wf geo-lt_transitivity2 geo-le_weakening-lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin sqequalRule hypothesisEquality independent_functionElimination because_Cache hypothesis productElimination universeIsType isectElimination applyEquality instantiate independent_isectElimination inhabitedIsType independent_pairFormation equalityTransitivity equalitySymmetry isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt natural_numberEquality unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt productIsType imageElimination imageMemberEquality baseClosed setElimination rename

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d,f:Point.
    (a  \#  bc  {}\mRightarrow{}  cbd  <  abd  {}\mRightarrow{}  a=d=c  {}\mRightarrow{}  a-f-c  {}\mRightarrow{}  cbf  \mcong{}\msuba{}  abf  {}\mRightarrow{}  |af|  <  |cf|)



Date html generated: 2019_10_16-PM-02_18_35
Last ObjectModification: 2019_09_12-AM-11_42_01

Theory : euclidean!plane!geometry


Home Index