Nuprl Lemma : geo-cong-angle-preserves-lt-angle2

g:EuclideanPlane. ∀a,b,c,d,e,f,x,y,z:Point.  (def ≅a xyz  abc < xyz  ef  abc < def)


Proof




Definitions occuring in Statement :  geo-lt-angle: abc < xyz geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-lsep: bc geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  basic-geometry: BasicGeometry prop: uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] geo-lt-angle: abc < xyz and: P ∧ Q exists: x:A. B[x] member: t ∈ T implies:  Q all: x:A. B[x] geo-cong-angle: abc ≅a xyz false: False not: ¬A cand: c∧ B
Lemmas referenced :  geo-point_wf geo-cong-angle_wf geo-lt-angle_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-lsep_wf interior-point-cong-angle-transfer-full not-out-if-lsep geo-out_inversion geo-sep-sym geo-eq_weakening geo-out_weakening geo-cong-angle-symm2 istype-void geo-sep_wf geo-between_wf geo-out_wf out-preserves-angle-cong_1
Rules used in proof :  because_Cache inhabitedIsType sqequalRule independent_isectElimination instantiate applyEquality isectElimination universeIsType productElimination hypothesis independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_pairFormation functionIsType productIsType dependent_pairFormation_alt

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d,e,f,x,y,z:Point.    (def  \mcong{}\msuba{}  xyz  {}\mRightarrow{}  abc  <  xyz  {}\mRightarrow{}  d  \#  ef  {}\mRightarrow{}  abc  <  def)



Date html generated: 2019_10_16-PM-01_51_36
Last ObjectModification: 2019_10_02-PM-01_15_54

Theory : euclidean!plane!geometry


Home Index