Nuprl Lemma : interior-point-cong-angle-transfer-full

g:EuclideanPlane. ∀a,b,c,d,e,f,x,y,z:Point.
  (abc < xyz
   def ≅a xyz
   ef
   (∃p,p',d',f':Point. (d'ep ≅a abc ∧ d'_p'_f' ∧ p' ≠ f' ∧ (out(e dd') ∧ out(e ff')) ∧ e_p'_p ∧ d_e_p))))


Proof




Definitions occuring in Statement :  geo-lt-angle: abc < xyz geo-out: out(p ab) geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-lsep: bc geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-lt-angle: abc < xyz and: P ∧ Q exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: basic-geometry: BasicGeometry geo-cong-angle: abc ≅a xyz geo-cong-tri: Cong3(abc,a'b'c') uiff: uiff(P;Q) cand: c∧ B not: ¬A false: False squash: T true: True geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) select: L[n] cons: [a b] subtract: m geo-out: out(p ab) stable: Stable{P} geo-eq: a ≡ b iff: ⇐⇒ Q l_member: (x ∈ l) nat: le: A ≤ B less_than': less_than'(a;b) less_than: a < b ge: i ≥  append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] oriented-plane: OrientedPlane
Lemmas referenced :  cong-angle-out-exists-cong3 geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-cong-angle_wf geo-lt-angle_wf geo-point_wf geo-out_weakening geo-eq_weakening geo-sep-sym out-preserves-angle-cong_1 geo-congruent-between-exists geo-congruent-iff-length geo-between-symmetry euclidean-plane-axioms geo-congruent-symmetry geo-congruent-sep geo-out_inversion geo-between-trivial geo-between_wf geo-sep_wf geo-out_wf istype-void geo-inner-five-segment geo-add-length-between geo-length-flip geo-add-length_wf squash_wf true_wf geo-length-type_wf basic-geometry_wf geo-add-length-comm colinear-lsep out-preserves-lsep lsep-symmetry lsep-all-sym geo-colinear-permute geo-colinear-is-colinear-set geo-between-implies-colinear length_of_cons_lemma length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than lsep-implies-sep geo-between-sep cong-tri-implies-cong-angle2 out-cong-angle geo-between-out geo-cong-angle-symm2 geo-cong-angle-transitivity stable__false false_wf not_wf minimal-double-negation-hyp-elim geo-between_functionality geo-sep_functionality geo-cong-angle_functionality geo-congruent_functionality minimal-not-not-excluded-middle colinear-lsep-cycle geo-colinear-append cons_wf nil_wf length_wf select_wf nat_properties intformand_wf itermVar_wf int_formula_prop_and_lemma int_term_value_var_lemma l_member_wf geo-out-colinear list_ind_cons_lemma list_ind_nil_lemma lsep-not-between geo-not-bet-and-out
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination universeIsType isectElimination applyEquality hypothesis instantiate independent_isectElimination sqequalRule inhabitedIsType because_Cache equalitySymmetry independent_pairFormation productIsType functionIsType dependent_pairFormation_alt equalityTransitivity lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt unionElimination approximateComputation unionEquality functionEquality unionIsType setElimination rename equalityIstype int_eqEquality

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d,e,f,x,y,z:Point.
    (abc  <  xyz
    {}\mRightarrow{}  def  \mcong{}\msuba{}  xyz
    {}\mRightarrow{}  d  \#  ef
    {}\mRightarrow{}  (\mexists{}p,p',d',f':Point
              (d'ep  \mcong{}\msuba{}  abc  \mwedge{}  d'\_p'\_f'  \mwedge{}  p'  \mneq{}  f'  \mwedge{}  (out(e  dd')  \mwedge{}  out(e  ff'))  \mwedge{}  e\_p'\_p  \mwedge{}  (\mneg{}d\_e\_p))))



Date html generated: 2019_10_16-PM-01_51_23
Last ObjectModification: 2019_09_27-PM-04_49_26

Theory : euclidean!plane!geometry


Home Index