Nuprl Lemma : geo-equilateral-exists

e:BasicGeometry-. ∀a,b,c:Point.  (a bc  (∃x:Point. ((ax ≅ ac ∧ out(a bx)) ∧ xc)))


Proof




Definitions occuring in Statement :  geo-out: out(p ab) basic-geometry-: BasicGeometry- geo-lsep: bc geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-lsep: bc or: P ∨ Q member: t ∈ T basic-geometry-: BasicGeometry- guard: {T} and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B uall: [x:A]. B[x] uimplies: supposing a euclidean-plane: EuclideanPlane exists: x:A. B[x] prop: geo-strict-between: a-b-c iff: ⇐⇒ Q geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False select: L[n] cons: [a b] subtract: m
Lemmas referenced :  left-implies-sep euclidean-plane-axioms geo-proper-extend-exists euclidean-plane-subtype-basic basic-geometry--subtype subtype_rel_transitivity basic-geometry-_wf euclidean-plane_wf basic-geometry_wf geo-O_wf geo-X_wf geo-sep-O-X geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype euclidean-plane-structure_wf geo-primitives_wf geo-point_wf geo-congruent_wf geo-out_wf geo-out-iff-between1 geo-between-symmetry geo-strict-between-implies-between geo-out_inversion colinear-lsep lsep-symmetry lsep-all-sym geo-colinear-permute geo-colinear-is-colinear-set geo-out-colinear length_of_cons_lemma istype-void length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalHypSubstitution unionElimination thin introduction extract_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis productElimination independent_pairFormation because_Cache applyEquality instantiate isectElimination independent_isectElimination sqequalRule setElimination rename universeIsType inhabitedIsType dependent_pairFormation_alt productIsType isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt natural_numberEquality approximateComputation lambdaEquality_alt

Latex:
\mforall{}e:BasicGeometry-.  \mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  (\mexists{}x:Point.  ((ax  \mcong{}  ac  \mwedge{}  out(a  bx))  \mwedge{}  a  \#  xc)))



Date html generated: 2019_10_16-PM-01_25_33
Last ObjectModification: 2019_01_04-AM-11_51_35

Theory : euclidean!plane!geometry


Home Index