Nuprl Lemma : Euclid-Prop19-lemma1

e:EuclideanPlane. ∀a,b,c,d:Point.  (a bc  bad ≅a cad  b-d-c  |bd| < |cd|  |ab| < |ac|)


Proof




Definitions occuring in Statement :  geo-cong-angle: abc ≅a xyz geo-lt: p < q geo-length: |s| geo-mk-seg: ab euclidean-plane: EuclideanPlane geo-lsep: bc geo-strict-between: a-b-c geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T guard: {T} and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B uall: [x:A]. B[x] uimplies: supposing a basic-geometry: BasicGeometry geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: false: False select: L[n] cons: [a b] subtract: m euclidean-plane: EuclideanPlane uiff: uiff(P;Q) squash: T true: True iff: ⇐⇒ Q basic-geometry-: BasicGeometry- rev_implies:  Q sq_exists: x:A [B[x]] sq_stable: SqStable(P) geo-midpoint: a=m=b heyting-geometry: HeytingGeometry geo-triangle: bc geo-tri: Triangle(a;b;c) geo-lt: p < q geo-strict-between: a-b-c
Lemmas referenced :  colinear-lsep lsep-all-sym geo-sep-sym geo-strict-between-sep2 euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-colinear-is-colinear-set geo-strict-between-implies-colinear length_of_cons_lemma istype-void length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than geo-lt_wf geo-length_wf geo-mk-seg_wf geo-strict-between_wf geo-cong-angle_wf geo-lsep_wf geo-point_wf lsep-implies-sep geo-congruent-iff-length squash_wf true_wf geo-length-type_wf basic-geometry_wf subtype_rel_self iff_weakening_equal geo-lt-out-to-between geo-out-iff-between1 euclidean-plane-axioms geo-strict-between-sep3 geo-between-symmetry geo-strict-between-implies-between geo-length-flip geo-congruent_wf geo-proper-extend-exists lsep-symmetry colinear-lsep-cycle geo-strict-between-sep1 outer-pasch-strict geo-between-outer-trans geo-between_wf sq_stable__and sq_stable__geo-strict-between geo-midpoint-diagonals-congruent vert-angles-congruent Euclid-Prop4 geo-between-out geo-out_weakening geo-eq_weakening geo-out_inversion geo-cong-angle-symm2 out-cong-angle geo-cong-angle-transitivity out-preserves-lsep Euclid-Prop6 out-preserves-angle-cong_1 geo-add-length-between geo-le_weakening geo-sep_wf geo-le_wf geo-add-length_wf geo-lt_transitivity geo-le_weakening-lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination because_Cache hypothesis productElimination applyEquality instantiate isectElimination independent_isectElimination sqequalRule isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt universeIsType productIsType setElimination rename inhabitedIsType equalitySymmetry imageElimination equalityTransitivity imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (a  \#  bc  {}\mRightarrow{}  bad  \mcong{}\msuba{}  cad  {}\mRightarrow{}  b-d-c  {}\mRightarrow{}  |bd|  <  |cd|  {}\mRightarrow{}  |ab|  <  |ac|)



Date html generated: 2019_10_16-PM-02_16_11
Last ObjectModification: 2018_12_14-PM-00_54_26

Theory : euclidean!plane!geometry


Home Index