Nuprl Lemma : Euclid-Prop4
∀e:EuclideanPlane. ∀a,b,c,A,B,C:Point.
  ((Triangle(a;b;c) ∧ Triangle(A;B;C))
  
⇒ (ab ≅ AB ∧ ac ≅ AC ∧ bac ≅a BAC)
  
⇒ (bc ≅ BC ∧ abc ≅a ABC ∧ bca ≅a BCA ∧ Cong3(abc,ABC)))
Proof
Definitions occuring in Statement : 
geo-cong-tri: Cong3(abc,a'b'c')
, 
geo-cong-angle: abc ≅a xyz
, 
geo-tri: Triangle(a;b;c)
, 
euclidean-plane: EuclideanPlane
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
basic-geometry: BasicGeometry
, 
geo-tri: Triangle(a;b;c)
, 
geo-cong-angle: abc ≅a xyz
, 
exists: ∃x:A. B[x]
, 
uiff: uiff(P;Q)
, 
geo-cong-tri: Cong3(abc,a'b'c')
Lemmas referenced : 
geo-congruent_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-cong-angle_wf, 
geo-tri_wf, 
geo-point_wf, 
geo-sas, 
geo-between_wf, 
geo-between-trivial, 
geo-congruent-iff-length, 
geo-length-flip
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
independent_pairFormation, 
hypothesis, 
sqequalRule, 
productIsType, 
universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
because_Cache, 
dependent_functionElimination, 
inhabitedIsType, 
dependent_pairFormation_alt, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,A,B,C:Point.
    ((Triangle(a;b;c)  \mwedge{}  Triangle(A;B;C))
    {}\mRightarrow{}  (ab  \mcong{}  AB  \mwedge{}  ac  \mcong{}  AC  \mwedge{}  bac  \mcong{}\msuba{}  BAC)
    {}\mRightarrow{}  (bc  \mcong{}  BC  \mwedge{}  abc  \mcong{}\msuba{}  ABC  \mwedge{}  bca  \mcong{}\msuba{}  BCA  \mwedge{}  Cong3(abc,ABC)))
Date html generated:
2019_10_16-PM-01_42_14
Last ObjectModification:
2018_11_07-PM-01_00_52
Theory : euclidean!plane!geometry
Home
Index