Nuprl Lemma : vert-angles-congruent

e:HeytingGeometry. ∀b,a,a',c,c':Point.  (a-b-a'  c-b-c'  bc  abc ≅a a'bc')


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-cong-angle: abc ≅a xyz geo-strict-between: a-b-c geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: and: P ∧ Q cand: c∧ B heyting-geometry: HeytingGeometry geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m euclidean-plane: EuclideanPlane basic-geometry-: BasicGeometry-
Lemmas referenced :  geo-triangle_wf euclidean-plane-structure-subtype euclidean-plane-subtype heyting-geometry-subtype subtype_rel_transitivity heyting-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-strict-between_wf geo-point_wf geo-triangle-symmetry sup-angles-preserve-congruence geo-cong-angle-symm euclidean-plane-subtype-basic basic-geometry_wf geo-strict-between-sep2 geo-triangle-colinear geo-sep-sym geo-strict-between-sep3 geo-colinear-is-colinear-set geo-strict-between-implies-colinear length_of_cons_lemma istype-void length_of_nil_lemma istype-false istype-le istype-less_than geo-strict-between-sym subtype_rel_self basic-geometry-_wf euclidean-plane-axioms geo-cong-angle-transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule because_Cache inhabitedIsType independent_pairFormation dependent_functionElimination independent_functionElimination productElimination isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt natural_numberEquality imageMemberEquality baseClosed productIsType

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}b,a,a',c,c':Point.    (a-b-a'  {}\mRightarrow{}  c-b-c'  {}\mRightarrow{}  a  \#  bc  {}\mRightarrow{}  abc  \mcong{}\msuba{}  a'bc')



Date html generated: 2019_10_16-PM-02_09_03
Last ObjectModification: 2018_11_07-PM-01_08_50

Theory : euclidean!plane!geometry


Home Index