Nuprl Lemma : sup-angles-preserve-congruence

e:HeytingGeometry. ∀a,b,c,x,y,z,a',x':Point.  ((abc ≅a xyz ∧ bc ∧ yz)  a-b-a'  x-y-x'  a'bc ≅a x'yz)


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-cong-angle: abc ≅a xyz geo-strict-between: a-b-c geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  heyting-geometry: Error :heyting-geometry,  true: True prop: squash: T uiff: uiff(P;Q) geo-strict-between: a-b-c uimplies: supposing a guard: {T} uall: [x:A]. B[x] exists: x:A. B[x] subtype_rel: A ⊆B member: t ∈ T and: P ∧ Q implies:  Q all: x:A. B[x] geo-out: out(p ab) geo-cong-tri: Cong3(abc,a'b'c') subtract: m cons: [a b] select: L[n] less_than: a < b not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} top: Top l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) cand: c∧ B
Lemmas referenced :  geo-point_wf Error :geo-triangle_wf,  geo-cong-angle_wf geo-strict-between_wf geo-add-length-comm geo-length-type_wf true_wf squash_wf geo-add-length_wf geo-congruent-iff-length geo-add-length-between geo-between-inner-trans geo-strict-between-sep1 geo-between-out geo-out_inversion geo-between-outer-trans geo-strict-between-implies-between geo-between-symmetry geo-bet-out-out-bet Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf Error :heyting-geometry_wf,  subtype_rel_transitivity basic-geometry-subtype geo-strict-between-sep3 geo-proper-extend-exists heyting-geometry-subtype cong-angle-out-exists3 geo-length-flip geo-sep-sym geo-five-segment lelt_wf false_wf length_of_nil_lemma length_of_cons_lemma geo-triangle-property geo-strict-between-implies-colinear geo-colinear-is-colinear-set geo-triangle-symmetry geo-triangle-colinear cong-angle-out-aux2
Rules used in proof :  setElimination productEquality baseClosed imageMemberEquality natural_numberEquality equalitySymmetry equalityTransitivity imageElimination lambdaEquality rename independent_isectElimination isectElimination instantiate because_Cache independent_functionElimination sqequalRule hypothesis applyEquality hypothesisEquality dependent_functionElimination extract_by_obid introduction cut thin productElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_pairFormation dependent_set_memberEquality voidEquality voidElimination isect_memberEquality

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,x,y,z,a',x':Point.
    ((abc  \00D0\msuba{}  xyz  \mwedge{}  a  \#  bc  \mwedge{}  x  \#  yz)  {}\mRightarrow{}  a-b-a'  {}\mRightarrow{}  x-y-x'  {}\mRightarrow{}  a'bc  \00D0\msuba{}  x'yz)



Date html generated: 2017_10_02-PM-07_04_13
Last ObjectModification: 2017_08_08-PM-00_36_16

Theory : euclidean!plane!geometry


Home Index