Nuprl Lemma : geo-lt-out-to-between
∀e:EuclideanPlane. ∀a,b,c:Point.  (out(a bc) ⇒ |ab| < |ac| ⇒ a-b-c)
Proof
Definitions occuring in Statement : 
geo-out: out(p ab), 
geo-lt: p < q, 
geo-length: |s|, 
geo-mk-seg: ab, 
euclidean-plane: EuclideanPlane, 
geo-strict-between: a-b-c, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
basic-geometry: BasicGeometry, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
uall: ∀[x:A]. B[x], 
euclidean-plane: EuclideanPlane, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
geo-strict-between: a-b-c, 
cand: A c∧ B, 
geo-out: out(p ab), 
squash: ↓T, 
true: True
Lemmas referenced : 
geo-out-le-iff-bet, 
geo-lt_wf, 
geo-length_wf, 
geo-mk-seg_wf, 
geo-out_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-le_weakening-lt, 
geo-add-length-between, 
squash_wf, 
true_wf, 
geo-length-type_wf, 
basic-geometry_wf, 
subtype_rel_self, 
iff_weakening_equal, 
geo-add-length-cancel-left-lt2, 
geo-zero-lt-iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
sqequalRule, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productElimination, 
universeIsType, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
inhabitedIsType, 
applyEquality, 
instantiate, 
independent_isectElimination, 
independent_pairFormation, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    (out(a  bc)  {}\mRightarrow{}  |ab|  <  |ac|  {}\mRightarrow{}  a-b-c)
Date html generated:
2019_10_16-PM-01_24_09
Last ObjectModification:
2018_12_13-PM-10_32_35
Theory : euclidean!plane!geometry
Home
Index