Nuprl Lemma : geo-lt-out-to-between

e:EuclideanPlane. ∀a,b,c:Point.  (out(a bc)  |ab| < |ac|  a-b-c)


Proof




Definitions occuring in Statement :  geo-out: out(p ab) geo-lt: p < q geo-length: |s| geo-mk-seg: ab euclidean-plane: EuclideanPlane geo-strict-between: a-b-c geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T basic-geometry: BasicGeometry iff: ⇐⇒ Q and: P ∧ Q uall: [x:A]. B[x] euclidean-plane: EuclideanPlane prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a geo-strict-between: a-b-c cand: c∧ B geo-out: out(p ab) squash: T true: True
Lemmas referenced :  geo-out-le-iff-bet geo-lt_wf geo-length_wf geo-mk-seg_wf geo-out_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-le_weakening-lt geo-add-length-between squash_wf true_wf geo-length-type_wf basic-geometry_wf subtype_rel_self iff_weakening_equal geo-add-length-cancel-left-lt2 geo-zero-lt-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin sqequalRule hypothesisEquality independent_functionElimination hypothesis productElimination universeIsType isectElimination setElimination rename because_Cache inhabitedIsType applyEquality instantiate independent_isectElimination independent_pairFormation lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    (out(a  bc)  {}\mRightarrow{}  |ab|  <  |ac|  {}\mRightarrow{}  a-b-c)



Date html generated: 2019_10_16-PM-01_24_09
Last ObjectModification: 2018_12_13-PM-10_32_35

Theory : euclidean!plane!geometry


Home Index