Nuprl Lemma : geo-lt-angle-symm

g:EuclideanPlane. ∀a,b,c,d,e,f:Point.  (abc < def  ef  abc < fed)


Proof




Definitions occuring in Statement :  geo-lt-angle: abc < xyz euclidean-plane: EuclideanPlane geo-lsep: bc geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: basic-geometry: BasicGeometry and: P ∧ Q cand: c∧ B
Lemmas referenced :  geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-lt-angle_wf geo-point_wf geo-cong-angle-symm euclidean-plane-axioms lsep-implies-sep geo-sep-sym lsep-symmetry geo-cong-angle-preserves-lt-angle2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule dependent_functionElimination inhabitedIsType because_Cache independent_functionElimination productElimination independent_pairFormation

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d,e,f:Point.    (abc  <  def  {}\mRightarrow{}  d  \#  ef  {}\mRightarrow{}  abc  <  fed)



Date html generated: 2019_10_16-PM-02_01_25
Last ObjectModification: 2018_11_28-AM-11_43_17

Theory : euclidean!plane!geometry


Home Index