Nuprl Lemma : geo-lt-angle-symm
∀g:EuclideanPlane. ∀a,b,c,d,e,f:Point.  (abc < def 
⇒ d # ef 
⇒ abc < fed)
Proof
Definitions occuring in Statement : 
geo-lt-angle: abc < xyz
, 
euclidean-plane: EuclideanPlane
, 
geo-lsep: a # bc
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
basic-geometry: BasicGeometry
, 
and: P ∧ Q
, 
cand: A c∧ B
Lemmas referenced : 
geo-lsep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-lt-angle_wf, 
geo-point_wf, 
geo-cong-angle-symm, 
euclidean-plane-axioms, 
lsep-implies-sep, 
geo-sep-sym, 
lsep-symmetry, 
geo-cong-angle-preserves-lt-angle2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
inhabitedIsType, 
because_Cache, 
independent_functionElimination, 
productElimination, 
independent_pairFormation
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d,e,f:Point.    (abc  <  def  {}\mRightarrow{}  d  \#  ef  {}\mRightarrow{}  abc  <  fed)
Date html generated:
2019_10_16-PM-02_01_25
Last ObjectModification:
2018_11_28-AM-11_43_17
Theory : euclidean!plane!geometry
Home
Index