Step
*
1
1
1
3
2
1
of Lemma
Euclid-Prop21
.....aux.....
1. g : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. a leftof bc
7. d leftof bc
8. d leftof ca
9. d leftof ab
10. a leftof bd
11. c leftof db
12. x : Point
13. a-x-c
14. B(bdx)
15. b # d
16. d # x
17. |bx| < |ba| + |ax|
18. |bx| + |xc| < |ba| + |ac|
19. |cd| < |cx| + |xd|
20. |bx| = |bd| + |dx| ∈ Length
⊢ |cd| + |db| < |cx| + |xb|
BY
{ ((Assert |xb| = |bd| + |dx| ∈ Length BY
(Subst' |bx| = |xb| ∈ Length -1 THEN Auto))
THEN (RWO "-1" 0 THEN Auto)
THEN (Assert |cx| + |bd| + |dx| = |cx| + |bd| + |dx| ∈ Length BY
Auto)
THEN RWO "-1" 0
THEN Auto) }
1
1. g : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. a leftof bc
7. d leftof bc
8. d leftof ca
9. d leftof ab
10. a leftof bd
11. c leftof db
12. x : Point
13. a-x-c
14. B(bdx)
15. b # d
16. d # x
17. |bx| < |ba| + |ax|
18. |bx| + |xc| < |ba| + |ac|
19. |cd| < |cx| + |xd|
20. |bx| = |bd| + |dx| ∈ Length
21. |xb| = |bd| + |dx| ∈ Length
22. |cx| + |bd| + |dx| = |cx| + |bd| + |dx| ∈ Length
⊢ |cd| + |db| < |cx| + |bd| + |dx|
Latex:
Latex:
.....aux.....
1. g : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. a leftof bc
7. d leftof bc
8. d leftof ca
9. d leftof ab
10. a leftof bd
11. c leftof db
12. x : Point
13. a-x-c
14. B(bdx)
15. b \# d
16. d \# x
17. |bx| < |ba| + |ax|
18. |bx| + |xc| < |ba| + |ac|
19. |cd| < |cx| + |xd|
20. |bx| = |bd| + |dx|
\mvdash{} |cd| + |db| < |cx| + |xb|
By
Latex:
((Assert |xb| = |bd| + |dx| BY
(Subst' |bx| = |xb| -1 THEN Auto))
THEN (RWO "-1" 0 THEN Auto)
THEN (Assert |cx| + |bd| + |dx| = |cx| + |bd| + |dx| BY
Auto)
THEN RWO "-1" 0
THEN Auto)
Home
Index