Step
*
1
2
1
2
1
of Lemma
Euclid-midpoint-1
.....assertion.....
1. e : EuclideanPlane
2. a : Point
3. b : {b:Point| a # b}
4. u : Point
5. v : Point
6. au ≅ ab
7. av ≅ ab
8. bu ≅ ba
9. bv ≅ ba
10. u leftof ab
11. v leftof ba
12. x : Point
13. Colinear(b;a;x)
14. B(vxu)
15. ax ≅ xb
⊢ B(axb)
BY
{ ((gSimpleColinearCases (-3)⋅ THEN Auto)
THEN Assert ⌜False⌝⋅
THEN Auto
THEN (FLemma `geo-add-length-between` [-1] THENA Auto)) }
1
1. e : EuclideanPlane
2. a : Point
3. b : {b:Point| a # b}
4. u : Point
5. v : Point
6. au ≅ ab
7. av ≅ ab
8. bu ≅ ba
9. bv ≅ ba
10. u leftof ab
11. v leftof ba
12. x : Point
13. Colinear(b;a;x)
14. B(vxu)
15. ax ≅ xb
16. B(bax)
17. |bx| = |ba| + |ax| ∈ Length
⊢ False
2
1. e : EuclideanPlane
2. a : Point
3. b : {b:Point| a # b}
4. u : Point
5. v : Point
6. au ≅ ab
7. av ≅ ab
8. bu ≅ ba
9. bv ≅ ba
10. u leftof ab
11. v leftof ba
12. x : Point
13. Colinear(b;a;x)
14. B(vxu)
15. ax ≅ xb
16. B(xba)
17. |xa| = |xb| + |ba| ∈ Length
⊢ False
Latex:
Latex:
.....assertion.....
1. e : EuclideanPlane
2. a : Point
3. b : \{b:Point| a \# b\}
4. u : Point
5. v : Point
6. au \mcong{} ab
7. av \mcong{} ab
8. bu \mcong{} ba
9. bv \mcong{} ba
10. u leftof ab
11. v leftof ba
12. x : Point
13. Colinear(b;a;x)
14. B(vxu)
15. ax \mcong{} xb
\mvdash{} B(axb)
By
Latex:
((gSimpleColinearCases (-3)\mcdot{} THEN Auto)
THEN Assert \mkleeneopen{}False\mkleeneclose{}\mcdot{}
THEN Auto
THEN (FLemma `geo-add-length-between` [-1] THENA Auto))
Home
Index