Nuprl Lemma : Meet
∀g:ProjectivePlaneStructure. ∀l,m:Line.  (l ≠ m 
⇒ (∃p:Point. (p I l ∧ p I m)))
Proof
Definitions occuring in Statement : 
projective-plane-structure: ProjectivePlaneStructure
, 
pgeo-lsep: l ≠ m
, 
pgeo-incident: a I b
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
pgeo-lsep_wf, 
projective-plane-structure_subtype, 
pgeo-line_wf, 
projective-plane-structure_wf, 
pgeo-meet_wf, 
set_wf, 
pgeo-point_wf, 
pgeo-incident_wf, 
sq_stable__pgeo-incident, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
rename, 
dependent_functionElimination, 
lambdaEquality, 
productEquality, 
dependent_pairFormation, 
setElimination, 
productElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}g:ProjectivePlaneStructure.  \mforall{}l,m:Line.    (l  \mneq{}  m  {}\mRightarrow{}  (\mexists{}p:Point.  (p  I  l  \mwedge{}  p  I  m)))
Date html generated:
2018_05_22-PM-00_30_55
Last ObjectModification:
2017_10_28-PM-05_28_48
Theory : euclidean!plane!geometry
Home
Index