Nuprl Lemma : Meet

g:ProjectivePlaneStructure. ∀l,m:Line.  (l ≠  (∃p:Point. (p l ∧ m)))


Proof




Definitions occuring in Statement :  projective-plane-structure: ProjectivePlaneStructure pgeo-lsep: l ≠ m pgeo-incident: b pgeo-line: Line pgeo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] exists: x:A. B[x] cand: c∧ B sq_stable: SqStable(P) squash: T
Lemmas referenced :  pgeo-lsep_wf projective-plane-structure_subtype pgeo-line_wf projective-plane-structure_wf pgeo-meet_wf set_wf pgeo-point_wf pgeo-incident_wf sq_stable__pgeo-incident equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis sqequalRule because_Cache rename dependent_functionElimination lambdaEquality productEquality dependent_pairFormation setElimination productElimination independent_functionElimination imageMemberEquality baseClosed imageElimination independent_pairFormation equalityTransitivity equalitySymmetry

Latex:
\mforall{}g:ProjectivePlaneStructure.  \mforall{}l,m:Line.    (l  \mneq{}  m  {}\mRightarrow{}  (\mexists{}p:Point.  (p  I  l  \mwedge{}  p  I  m)))



Date html generated: 2018_05_22-PM-00_30_55
Last ObjectModification: 2017_10_28-PM-05_28_48

Theory : euclidean!plane!geometry


Home Index