Nuprl Lemma : P_point-apartness-relation1

e:EuclideanParPlane. ∀P:P_point(e).  P_point-sep(e;P;P))


Proof




Definitions occuring in Statement :  P_point-sep: P_point-sep(eu;P;Q) P_point: P_point(eu) euclidean-parallel-plane: EuclideanParPlane all: x:A. B[x] not: ¬A
Definitions unfolded in proof :  all: x:A. B[x] not: ¬A implies:  Q false: False P_point-sep: P_point-sep(eu;P;Q) exists: x:A. B[x] and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x]
Lemmas referenced :  P_point-sep_wf P_point_wf euclidean-parallel-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin sqequalHypSubstitution productElimination independent_functionElimination hypothesis voidElimination because_Cache introduction extract_by_obid isectElimination hypothesisEquality dependent_functionElimination

Latex:
\mforall{}e:EuclideanParPlane.  \mforall{}P:P\_point(e).    (\mneg{}P\_point-sep(e;P;P))



Date html generated: 2019_10_16-PM-03_02_08
Last ObjectModification: 2018_08_19-PM-09_39_10

Theory : euclidean!plane!geometry


Home Index