Nuprl Lemma : P_point-apartness-relation1
∀e:EuclideanParPlane. ∀P:P_point(e).  (¬P_point-sep(e;P;P))
Proof
Definitions occuring in Statement : 
P_point-sep: P_point-sep(eu;P;Q)
, 
P_point: P_point(eu)
, 
euclidean-parallel-plane: EuclideanParPlane
, 
all: ∀x:A. B[x]
, 
not: ¬A
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
P_point-sep: P_point-sep(eu;P;Q)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
P_point-sep_wf, 
P_point_wf, 
euclidean-parallel-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
sqequalHypSubstitution, 
productElimination, 
independent_functionElimination, 
hypothesis, 
voidElimination, 
because_Cache, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination
Latex:
\mforall{}e:EuclideanParPlane.  \mforall{}P:P\_point(e).    (\mneg{}P\_point-sep(e;P;P))
Date html generated:
2019_10_16-PM-03_02_08
Last ObjectModification:
2018_08_19-PM-09_39_10
Theory : euclidean!plane!geometry
Home
Index