Nuprl Lemma : P_point-sep_wf
∀[eu:EuclideanParPlane]. ∀P,Q:P_point(eu).  (P_point-sep(eu;P;Q) ∈ ℙ)
Proof
Definitions occuring in Statement : 
P_point-sep: P_point-sep(eu;P;Q)
, 
P_point: P_point(eu)
, 
euclidean-parallel-plane: EuclideanParPlane
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
P_point-sep: P_point-sep(eu;P;Q)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
P_line_wf, 
not_wf, 
P_point-line-sep_wf, 
P_point_wf, 
euclidean-parallel-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
productEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache
Latex:
\mforall{}[eu:EuclideanParPlane].  \mforall{}P,Q:P\_point(eu).    (P\_point-sep(eu;P;Q)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_16-PM-03_01_49
Last ObjectModification:
2018_08_09-PM-04_03_25
Theory : euclidean!plane!geometry
Home
Index