Nuprl Lemma : P_point-sep_wf

[eu:EuclideanParPlane]. ∀P,Q:P_point(eu).  (P_point-sep(eu;P;Q) ∈ ℙ)


Proof




Definitions occuring in Statement :  P_point-sep: P_point-sep(eu;P;Q) P_point: P_point(eu) euclidean-parallel-plane: EuclideanParPlane uall: [x:A]. B[x] prop: all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] P_point-sep: P_point-sep(eu;P;Q) so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s]
Lemmas referenced :  exists_wf P_line_wf not_wf P_point-line-sep_wf P_point_wf euclidean-parallel-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis lambdaEquality productEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache

Latex:
\mforall{}[eu:EuclideanParPlane].  \mforall{}P,Q:P\_point(eu).    (P\_point-sep(eu;P;Q)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_16-PM-03_01_49
Last ObjectModification: 2018_08_09-PM-04_03_25

Theory : euclidean!plane!geometry


Home Index