Nuprl Lemma : P_point_wf

eu:EuclideanParPlane. (P_point(eu) ∈ Type)


Proof




Definitions occuring in Statement :  P_point: P_point(eu) euclidean-parallel-plane: EuclideanParPlane all: x:A. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T P_point: P_point(eu) uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a and: P ∧ Q euclidean-parallel-plane: EuclideanParPlane prop:
Lemmas referenced :  geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype euclidean-planes-subtype subtype_rel_transitivity euclidean-parallel-plane_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-line_wf geo-incident_wf geoline-subtype1 geo-plsep_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule productEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination dependent_functionElimination because_Cache setElimination rename

Latex:
\mforall{}eu:EuclideanParPlane.  (P\_point(eu)  \mmember{}  Type)



Date html generated: 2019_10_16-PM-02_59_38
Last ObjectModification: 2018_08_08-PM-06_01_09

Theory : euclidean!plane!geometry


Home Index