Nuprl Lemma : P_point_wf
∀eu:EuclideanParPlane. (P_point(eu) ∈ Type)
Proof
Definitions occuring in Statement : 
P_point: P_point(eu)
, 
euclidean-parallel-plane: EuclideanParPlane
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
P_point: P_point(eu)
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
euclidean-parallel-plane: EuclideanParPlane
, 
prop: ℙ
Lemmas referenced : 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
euclidean-planes-subtype, 
subtype_rel_transitivity, 
euclidean-parallel-plane_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-line_wf, 
geo-incident_wf, 
geoline-subtype1, 
geo-plsep_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
productEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
dependent_functionElimination, 
because_Cache, 
setElimination, 
rename
Latex:
\mforall{}eu:EuclideanParPlane.  (P\_point(eu)  \mmember{}  Type)
Date html generated:
2019_10_16-PM-02_59_38
Last ObjectModification:
2018_08_08-PM-06_01_09
Theory : euclidean!plane!geometry
Home
Index