Nuprl Lemma : P_line_wf

e:EuclideanParPlane. (P_line(e) ∈ Type)


Proof




Definitions occuring in Statement :  P_line: P_line(eu) euclidean-parallel-plane: EuclideanParPlane all: x:A. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T P_line: P_line(eu) subtype_rel: A ⊆B uall: [x:A]. B[x] guard: {T} uimplies: supposing a euclidean-parallel-plane: EuclideanParPlane prop:
Lemmas referenced :  geo-line_wf euclidean-plane-structure-subtype euclidean-plane-subtype euclidean-planes-subtype subtype_rel_transitivity euclidean-parallel-plane_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf geo-incident_wf geoline-subtype1 geo-plsep_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule productEquality introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality applyEquality hypothesis instantiate isectElimination independent_isectElimination because_Cache setEquality setElimination rename

Latex:
\mforall{}e:EuclideanParPlane.  (P\_line(e)  \mmember{}  Type)



Date html generated: 2019_10_16-PM-03_00_14
Last ObjectModification: 2018_08_08-PM-06_05_11

Theory : euclidean!plane!geometry


Home Index