Nuprl Lemma : basic-projective-plane-axioms
∀g:BasicProjectivePlane. ∀m,l:Line. ∀p,q:Point.  (p I l 
⇒ q I l 
⇒ p I m 
⇒ q I m 
⇒ (¬((¬p ≡ q) ∧ (¬l ≡ m))))
Proof
Definitions occuring in Statement : 
basic-projective-plane: BasicProjectivePlane
, 
pgeo-leq: a ≡ b
, 
pgeo-peq: a ≡ b
, 
pgeo-incident: a I b
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
basic-projective-plane: BasicProjectivePlane
, 
member: t ∈ T
, 
prop: ℙ
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
basic-pgeo-axioms: BasicProjectiveGeometryAxioms(g)
Lemmas referenced : 
not_wf, 
pgeo-peq_wf, 
projective-plane-structure_subtype, 
pgeo-leq_wf, 
basic-projective-plane-subtype, 
subtype_rel_transitivity, 
basic-projective-plane_wf, 
projective-plane-structure_wf, 
pgeo-primitives_wf, 
pgeo-incident_wf, 
pgeo-point_wf, 
pgeo-line_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
sqequalHypSubstitution, 
setElimination, 
rename, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
productEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
because_Cache, 
instantiate, 
independent_isectElimination, 
dependent_functionElimination
Latex:
\mforall{}g:BasicProjectivePlane.  \mforall{}m,l:Line.  \mforall{}p,q:Point.
    (p  I  l  {}\mRightarrow{}  q  I  l  {}\mRightarrow{}  p  I  m  {}\mRightarrow{}  q  I  m  {}\mRightarrow{}  (\mneg{}((\mneg{}p  \mequiv{}  q)  \mwedge{}  (\mneg{}l  \mequiv{}  m))))
Date html generated:
2019_10_16-PM-02_12_05
Last ObjectModification:
2018_08_02-PM-01_17_07
Theory : euclidean!plane!geometry
Home
Index