Nuprl Lemma : basic-projective-plane-axioms

g:BasicProjectivePlane. ∀m,l:Line. ∀p,q:Point.  (p     ((¬p ≡ q) ∧ l ≡ m))))


Proof




Definitions occuring in Statement :  basic-projective-plane: BasicProjectivePlane pgeo-leq: a ≡ b pgeo-peq: a ≡ b pgeo-incident: b pgeo-line: Line pgeo-point: Point all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False basic-projective-plane: BasicProjectivePlane member: t ∈ T prop: and: P ∧ Q uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a basic-pgeo-axioms: BasicProjectiveGeometryAxioms(g)
Lemmas referenced :  not_wf pgeo-peq_wf projective-plane-structure_subtype pgeo-leq_wf basic-projective-plane-subtype subtype_rel_transitivity basic-projective-plane_wf projective-plane-structure_wf pgeo-primitives_wf pgeo-incident_wf pgeo-point_wf pgeo-line_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin sqequalHypSubstitution setElimination rename hypothesis independent_functionElimination voidElimination productEquality introduction extract_by_obid isectElimination hypothesisEquality applyEquality sqequalRule because_Cache instantiate independent_isectElimination dependent_functionElimination

Latex:
\mforall{}g:BasicProjectivePlane.  \mforall{}m,l:Line.  \mforall{}p,q:Point.
    (p  I  l  {}\mRightarrow{}  q  I  l  {}\mRightarrow{}  p  I  m  {}\mRightarrow{}  q  I  m  {}\mRightarrow{}  (\mneg{}((\mneg{}p  \mequiv{}  q)  \mwedge{}  (\mneg{}l  \mequiv{}  m))))



Date html generated: 2019_10_16-PM-02_12_05
Last ObjectModification: 2018_08_02-PM-01_17_07

Theory : euclidean!plane!geometry


Home Index