Nuprl Lemma : cong-angle-out-exists-aux3-weak
∀e:HeytingGeometry. ∀a,b,c,x,y,z:Point.
  ((∃a',c',x',z':Point. (Cong3(a'bc',x'yz') ∧ out(b a'a) ∧ out(b c'c) ∧ out(y x'x) ∧ out(y z'z))) 
⇒ abc ≅a xyz)
Proof
Definitions occuring in Statement : 
heyting-geometry: HeytingGeometry
, 
geo-out: out(p ab)
, 
geo-cong-tri: Cong3(abc,a'b'c')
, 
geo-cong-angle: abc ≅a xyz
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
geo-cong-tri: Cong3(abc,a'b'c')
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
Lemmas referenced : 
geo-cong-tri_wf, 
euclidean-plane-subtype-basic, 
heyting-geometry-subtype, 
subtype_rel_transitivity, 
heyting-geometry_wf, 
euclidean-plane_wf, 
basic-geometry_wf, 
geo-out_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-congruent-iff-length, 
geo-length-flip, 
cong-angle-out-aux2-weak
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
productIsType, 
inhabitedIsType, 
hypothesisEquality, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
because_Cache, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
independent_functionElimination
Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,x,y,z:Point.
    ((\mexists{}a',c',x',z':Point.  (Cong3(a'bc',x'yz')  \mwedge{}  out(b  a'a)  \mwedge{}  out(b  c'c)  \mwedge{}  out(y  x'x)  \mwedge{}  out(y  z'z)))
    {}\mRightarrow{}  abc  \mcong{}\msuba{}  xyz)
Date html generated:
2019_10_16-PM-02_08_47
Last ObjectModification:
2018_10_22-PM-02_48_39
Theory : euclidean!plane!geometry
Home
Index