Nuprl Lemma : cong-angle-out-exists-aux3-weak

e:HeytingGeometry. ∀a,b,c,x,y,z:Point.
  ((∃a',c',x',z':Point. (Cong3(a'bc',x'yz') ∧ out(b a'a) ∧ out(b c'c) ∧ out(y x'x) ∧ out(y z'z)))  abc ≅a xyz)


Proof




Definitions occuring in Statement :  heyting-geometry: HeytingGeometry geo-out: out(p ab) geo-cong-tri: Cong3(abc,a'b'c') geo-cong-angle: abc ≅a xyz geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: geo-cong-tri: Cong3(abc,a'b'c') cand: c∧ B uiff: uiff(P;Q)
Lemmas referenced :  geo-cong-tri_wf euclidean-plane-subtype-basic heyting-geometry-subtype subtype_rel_transitivity heyting-geometry_wf euclidean-plane_wf basic-geometry_wf geo-out_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype euclidean-plane-structure_wf geo-primitives_wf geo-congruent-iff-length geo-length-flip cong-angle-out-aux2-weak
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin sqequalRule productIsType inhabitedIsType hypothesisEquality universeIsType cut introduction extract_by_obid isectElimination applyEquality hypothesis instantiate independent_isectElimination because_Cache dependent_functionElimination equalityTransitivity equalitySymmetry independent_pairFormation independent_functionElimination

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,x,y,z:Point.
    ((\mexists{}a',c',x',z':Point.  (Cong3(a'bc',x'yz')  \mwedge{}  out(b  a'a)  \mwedge{}  out(b  c'c)  \mwedge{}  out(y  x'x)  \mwedge{}  out(y  z'z)))
    {}\mRightarrow{}  abc  \mcong{}\msuba{}  xyz)



Date html generated: 2019_10_16-PM-02_08_47
Last ObjectModification: 2018_10_22-PM-02_48_39

Theory : euclidean!plane!geometry


Home Index