Nuprl Lemma : cong-angle-out-aux2-weak
∀g:HeytingGeometry. ∀a,b,c,d,e,f,a',c',d',f':Point.
  (a'c' ≅ d'f' 
⇒ out(b a'a) 
⇒ out(b c'c) 
⇒ out(e d'd) 
⇒ out(e f'f) 
⇒ ba' ≅ ed' 
⇒ bc' ≅ ef' 
⇒ abc ≅a def)
Proof
Definitions occuring in Statement : 
heyting-geometry: HeytingGeometry
, 
geo-out: out(p ab)
, 
geo-cong-angle: abc ≅a xyz
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
geo-cong-angle: abc ≅a xyz
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
heyting-geometry: HeytingGeometry
, 
geo-out: out(p ab)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
euclidean-plane: EuclideanPlane
, 
basic-geometry-: BasicGeometry-
, 
uiff: uiff(P;Q)
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
Lemmas referenced : 
geo-sep-sym, 
geo-proper-extend-exists, 
euclidean-plane-subtype-basic, 
heyting-geometry-subtype, 
subtype_rel_transitivity, 
heyting-geometry_wf, 
euclidean-plane_wf, 
basic-geometry_wf, 
geo-strict-between-implies-between, 
subtype_rel_self, 
basic-geometry-_wf, 
geo-between-symmetry, 
geo-congruent-iff-length, 
geo-add-length-between, 
geo-add-length_wf, 
squash_wf, 
true_wf, 
geo-length-type_wf, 
geo-add-length-comm, 
geo-between_wf, 
geo-congruent_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-out_wf, 
geo-point_wf, 
geo-between-out, 
geo-strict-between-sep1, 
geo-out_transitivity, 
geo-out_inversion, 
geo-out-cong-cong, 
geo-colinear-five-segment, 
geo-colinear-is-colinear-set, 
geo-out-colinear, 
length_of_cons_lemma, 
istype-void, 
length_of_nil_lemma, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
geo-length-flip
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
productElimination, 
hypothesis, 
because_Cache, 
applyEquality, 
instantiate, 
isectElimination, 
independent_isectElimination, 
sqequalRule, 
rename, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
inhabitedIsType, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productIsType, 
isect_memberEquality_alt, 
voidElimination, 
dependent_set_memberEquality_alt, 
unionElimination, 
approximateComputation
Latex:
\mforall{}g:HeytingGeometry.  \mforall{}a,b,c,d,e,f,a',c',d',f':Point.
    (a'c'  \mcong{}  d'f'
    {}\mRightarrow{}  out(b  a'a)
    {}\mRightarrow{}  out(b  c'c)
    {}\mRightarrow{}  out(e  d'd)
    {}\mRightarrow{}  out(e  f'f)
    {}\mRightarrow{}  ba'  \mcong{}  ed'
    {}\mRightarrow{}  bc'  \mcong{}  ef'
    {}\mRightarrow{}  abc  \mcong{}\msuba{}  def)
Date html generated:
2019_10_16-PM-02_08_33
Last ObjectModification:
2018_12_15-PM-09_45_34
Theory : euclidean!plane!geometry
Home
Index