Nuprl Lemma : cong-angle-out-aux2-weak

g:HeytingGeometry. ∀a,b,c,d,e,f,a',c',d',f':Point.
  (a'c' ≅ d'f'  out(b a'a)  out(b c'c)  out(e d'd)  out(e f'f)  ba' ≅ ed'  bc' ≅ ef'  abc ≅a def)


Proof




Definitions occuring in Statement :  heyting-geometry: HeytingGeometry geo-out: out(p ab) geo-cong-angle: abc ≅a xyz geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-cong-angle: abc ≅a xyz and: P ∧ Q cand: c∧ B member: t ∈ T heyting-geometry: HeytingGeometry geo-out: out(p ab) subtype_rel: A ⊆B uall: [x:A]. B[x] guard: {T} uimplies: supposing a exists: x:A. B[x] euclidean-plane: EuclideanPlane basic-geometry-: BasicGeometry- uiff: uiff(P;Q) squash: T prop: true: True geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False select: L[n] cons: [a b] subtract: m
Lemmas referenced :  geo-sep-sym geo-proper-extend-exists euclidean-plane-subtype-basic heyting-geometry-subtype subtype_rel_transitivity heyting-geometry_wf euclidean-plane_wf basic-geometry_wf geo-strict-between-implies-between subtype_rel_self basic-geometry-_wf geo-between-symmetry geo-congruent-iff-length geo-add-length-between geo-add-length_wf squash_wf true_wf geo-length-type_wf geo-add-length-comm geo-between_wf geo-congruent_wf euclidean-plane-structure-subtype euclidean-plane-subtype euclidean-plane-structure_wf geo-primitives_wf geo-out_wf geo-point_wf geo-between-out geo-strict-between-sep1 geo-out_transitivity geo-out_inversion geo-out-cong-cong geo-colinear-five-segment geo-colinear-is-colinear-set geo-out-colinear length_of_cons_lemma istype-void length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than geo-length-flip
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination productElimination hypothesis because_Cache applyEquality instantiate isectElimination independent_isectElimination sqequalRule rename dependent_pairFormation_alt lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeIsType inhabitedIsType natural_numberEquality imageMemberEquality baseClosed productIsType isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt unionElimination approximateComputation

Latex:
\mforall{}g:HeytingGeometry.  \mforall{}a,b,c,d,e,f,a',c',d',f':Point.
    (a'c'  \mcong{}  d'f'
    {}\mRightarrow{}  out(b  a'a)
    {}\mRightarrow{}  out(b  c'c)
    {}\mRightarrow{}  out(e  d'd)
    {}\mRightarrow{}  out(e  f'f)
    {}\mRightarrow{}  ba'  \mcong{}  ed'
    {}\mRightarrow{}  bc'  \mcong{}  ef'
    {}\mRightarrow{}  abc  \mcong{}\msuba{}  def)



Date html generated: 2019_10_16-PM-02_08_33
Last ObjectModification: 2018_12_15-PM-09_45_34

Theory : euclidean!plane!geometry


Home Index