Nuprl Lemma : cong-angle-out-exists-aux3
∀e:HeytingGeometry. ∀a,b,c,x,y,z:Point.
  ((∃a',c',x',z':Point
     ((Cong3(a'bc',x'yz') ∧ b # a'c' ∧ y # x'z') ∧ out(b a'a) ∧ out(b c'c) ∧ out(y x'x) ∧ out(y z'z)))
  
⇒ abc ≅a xyz)
Proof
Definitions occuring in Statement : 
geo-triangle: a # bc
, 
heyting-geometry: HeytingGeometry
, 
geo-out: out(p ab)
, 
geo-cong-tri: Cong3(abc,a'b'c')
, 
geo-cong-angle: abc ≅a xyz
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
so_apply: x[s]
, 
heyting-geometry: Error :heyting-geometry, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
cand: A c∧ B
, 
geo-cong-tri: Cong3(abc,a'b'c')
Lemmas referenced : 
geo-out_wf, 
Error :geo-triangle_wf, 
geo-cong-tri_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
Error :heyting-geometry_wf, 
subtype_rel_transitivity, 
heyting-geometry-subtype, 
basic-geometry-subtype, 
geo-point_wf, 
exists_wf, 
cong-angle-out-aux2, 
geo-triangle-symmetry, 
geo-out-triangle, 
geo-length-flip, 
geo-congruent-iff-length
Rules used in proof : 
rename, 
setElimination, 
productEquality, 
because_Cache, 
lambdaEquality, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination, 
independent_pairFormation, 
equalitySymmetry, 
equalityTransitivity, 
dependent_functionElimination
Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,x,y,z:Point.
    ((\mexists{}a',c',x',z':Point
          ((Cong3(a'bc',x'yz')  \mwedge{}  b  \#  a'c'  \mwedge{}  y  \#  x'z')
          \mwedge{}  out(b  a'a)
          \mwedge{}  out(b  c'c)
          \mwedge{}  out(y  x'x)
          \mwedge{}  out(y  z'z)))
    {}\mRightarrow{}  abc  \00D0\msuba{}  xyz)
Date html generated:
2017_10_02-PM-07_03_53
Last ObjectModification:
2017_08_06-PM-08_57_47
Theory : euclidean!plane!geometry
Home
Index