Nuprl Lemma : cong-angle-out-exists-aux3

e:HeytingGeometry. ∀a,b,c,x,y,z:Point.
  ((∃a',c',x',z':Point
     ((Cong3(a'bc',x'yz') ∧ a'c' ∧ x'z') ∧ out(b a'a) ∧ out(b c'c) ∧ out(y x'x) ∧ out(y z'z)))
   abc ≅a xyz)


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-out: out(p ab) geo-cong-tri: Cong3(abc,a'b'c') geo-cong-angle: abc ≅a xyz geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  so_apply: x[s] heyting-geometry: Error :heyting-geometry,  so_lambda: λ2x.t[x] uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T and: P ∧ Q exists: x:A. B[x] implies:  Q all: x:A. B[x] uiff: uiff(P;Q) cand: c∧ B geo-cong-tri: Cong3(abc,a'b'c')
Lemmas referenced :  geo-out_wf Error :geo-triangle_wf,  geo-cong-tri_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf Error :heyting-geometry_wf,  subtype_rel_transitivity heyting-geometry-subtype basic-geometry-subtype geo-point_wf exists_wf cong-angle-out-aux2 geo-triangle-symmetry geo-out-triangle geo-length-flip geo-congruent-iff-length
Rules used in proof :  rename setElimination productEquality because_Cache lambdaEquality sqequalRule independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality isectElimination extract_by_obid introduction cut thin productElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination independent_pairFormation equalitySymmetry equalityTransitivity dependent_functionElimination

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,x,y,z:Point.
    ((\mexists{}a',c',x',z':Point
          ((Cong3(a'bc',x'yz')  \mwedge{}  b  \#  a'c'  \mwedge{}  y  \#  x'z')
          \mwedge{}  out(b  a'a)
          \mwedge{}  out(b  c'c)
          \mwedge{}  out(y  x'x)
          \mwedge{}  out(y  z'z)))
    {}\mRightarrow{}  abc  \00D0\msuba{}  xyz)



Date html generated: 2017_10_02-PM-07_03_53
Last ObjectModification: 2017_08_06-PM-08_57_47

Theory : euclidean!plane!geometry


Home Index