Nuprl Lemma : cong-tri-implies-cong-angle
∀e:BasicGeometry. ∀a,b,c,x,y,z:Point.  (Cong3(abc,xyz) ⇒ a ≠ b ⇒ b ≠ c ⇒ x ≠ y ⇒ y ≠ z ⇒ abc ≅a xyz)
Proof
Definitions occuring in Statement : 
geo-cong-tri: Cong3(abc,a'b'c'), 
geo-cong-angle: abc ≅a xyz, 
basic-geometry: BasicGeometry, 
geo-sep: a ≠ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
geo-cong-angle: abc ≅a xyz, 
and: P ∧ Q, 
geo-cong-tri: Cong3(abc,a'b'c'), 
exists: ∃x:A. B[x], 
member: t ∈ T, 
cand: A c∧ B, 
basic-geometry: BasicGeometry, 
uall: ∀[x:A]. B[x], 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
guard: {T}
Lemmas referenced : 
geo-between-trivial, 
geo-congruent-iff-length, 
geo-length-flip, 
geo-between_wf, 
geo-congruent_wf, 
geo-sep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-cong-tri_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
hypothesis, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation_alt, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
productIsType, 
universeIsType, 
applyEquality, 
instantiate, 
inhabitedIsType
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,x,y,z:Point.
    (Cong3(abc,xyz)  {}\mRightarrow{}  a  \mneq{}  b  {}\mRightarrow{}  b  \mneq{}  c  {}\mRightarrow{}  x  \mneq{}  y  {}\mRightarrow{}  y  \mneq{}  z  {}\mRightarrow{}  abc  \mcong{}\msuba{}  xyz)
Date html generated:
2019_10_16-PM-01_22_42
Last ObjectModification:
2018_11_07-PM-00_53_15
Theory : euclidean!plane!geometry
Home
Index