Nuprl Lemma : dist-lemma-lt-2

g:EuclideanPlane. ∀a,b,e,f:Point.  (D(a;b;b;b;e;f)  |ef| < |ab|)


Proof




Definitions occuring in Statement :  dist: D(a;b;c;d;e;f) geo-lt: p < q geo-length: |s| geo-mk-seg: ab euclidean-plane: EuclideanPlane geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] euclidean-plane: EuclideanPlane prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a basic-geometry: BasicGeometry
Lemmas referenced :  dist_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-add-length-zero2 geo-length_wf geo-mk-seg_wf geo-lt_wf dist-lemma-lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis inhabitedIsType applyEquality instantiate independent_isectElimination sqequalRule equalitySymmetry hyp_replacement applyLambdaEquality because_Cache dependent_functionElimination independent_functionElimination

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,e,f:Point.    (D(a;b;b;b;e;f)  {}\mRightarrow{}  |ef|  <  |ab|)



Date html generated: 2019_10_16-PM-02_49_04
Last ObjectModification: 2019_06_05-PM-01_40_31

Theory : euclidean!plane!geometry


Home Index