Step
*
1
1
3
2
1
2
of Lemma
full-Pasch-lemma
1. e : EuclideanPlane
2. a : Point
3. x : Point
4. y : Point
5. d : Point
6. p : Point
7. d leftof xa
8. x-p-a
9. d leftof yp
10. a leftof xy
11. y leftof ax
12. b : Point
13. Colinear(a;x;b)
14. B(ybd)
15. a leftof py
16. b # y
17. b # yp
18. b leftof yp
19. b-p-a
⊢ ∃p':Point. ((x-p'-y ∨ a-p'-y) ∧ Colinear(d;p;p'))
BY
{ ((InstLemma `plane-sep-imp-Opasch_left` [⌜e⌝;⌜d⌝;⌜b⌝;⌜y⌝;⌜p⌝;⌜a⌝]⋅ THEN Auto)
THENA (InstLemma `colinear-lsep` [⌜e⌝;⌜y⌝;⌜b⌝;⌜p⌝;⌜d⌝]⋅ THENA Auto)
THENA ((Assert d # b BY
((InstLemma `lsep-colinear-sep` [⌜e⌝;⌜d⌝;⌜x⌝;⌜a⌝]⋅ THEN Auto) THENA (Unfold `geo-lsep` 0 THEN Auto)))
THEN Auto
)) }
1
1. e : EuclideanPlane
2. a : Point
3. x : Point
4. y : Point
5. d : Point
6. p : Point
7. d leftof xa
8. x-p-a
9. d leftof yp
10. a leftof xy
11. y leftof ax
12. b : Point
13. Colinear(a;x;b)
14. B(ybd)
15. a leftof py
16. b # y
17. b # yp
18. b leftof yp
19. b-p-a
20. d # bp
⊢ p leftof db
2
1. e : EuclideanPlane
2. a : Point
3. x : Point
4. y : Point
5. d : Point
6. p : Point
7. d leftof xa
8. x-p-a
9. d leftof yp
10. a leftof xy
11. y leftof ax
12. b : Point
13. Colinear(a;x;b)
14. B(ybd)
15. a leftof py
16. b # y
17. b # yp
18. b leftof yp
19. b-p-a
20. ∃p@0:Point [(B(dpp@0) ∧ B(yp@0a))]
⊢ ∃p':Point. ((x-p'-y ∨ a-p'-y) ∧ Colinear(d;p;p'))
Latex:
Latex:
1. e : EuclideanPlane
2. a : Point
3. x : Point
4. y : Point
5. d : Point
6. p : Point
7. d leftof xa
8. x-p-a
9. d leftof yp
10. a leftof xy
11. y leftof ax
12. b : Point
13. Colinear(a;x;b)
14. B(ybd)
15. a leftof py
16. b \# y
17. b \# yp
18. b leftof yp
19. b-p-a
\mvdash{} \mexists{}p':Point. ((x-p'-y \mvee{} a-p'-y) \mwedge{} Colinear(d;p;p'))
By
Latex:
((InstLemma `plane-sep-imp-Opasch\_left` [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}p\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{}]\mcdot{} THEN Auto)
THENA (InstLemma `colinear-lsep` [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}p\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{}]\mcdot{} THENA Auto)
THENA ((Assert d \# b BY
((InstLemma `lsep-colinear-sep` [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{}]\mcdot{} THEN Auto)
THENA (Unfold `geo-lsep` 0 THEN Auto)
))
THEN Auto
))
Home
Index