Nuprl Lemma : geo-add-length-cancel-right
∀[e:BasicGeometry]. ∀[x,y,z:Length].  x = y ∈ Length supposing x + z = y + z ∈ Length
Proof
Definitions occuring in Statement : 
geo-add-length: p + q
, 
geo-length-type: Length
, 
basic-geometry: BasicGeometry
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
true: True
, 
prop: ℙ
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
iff_weakening_equal, 
geo-add-length-comm, 
true_wf, 
squash_wf, 
basic-geometry_wf, 
geo-add-length_wf, 
geo-length-type_wf, 
equal_wf, 
geo-add-length-cancel-left
Rules used in proof : 
independent_functionElimination, 
productElimination, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
lambdaEquality, 
applyEquality, 
natural_numberEquality, 
because_Cache, 
independent_isectElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[x,y,z:Length].    x  =  y  supposing  x  +  z  =  y  +  z
Date html generated:
2017_10_02-PM-06_14_31
Last ObjectModification:
2017_08_05-PM-04_11_13
Theory : euclidean!plane!geometry
Home
Index