Nuprl Lemma : geo-add-length-cancel-left
∀[e:BasicGeometry]. ∀[x,y,z:Length].  x = y ∈ Length supposing z + x = z + y ∈ Length
Proof
Definitions occuring in Statement : 
geo-add-length: p + q
, 
geo-length-type: Length
, 
basic-geometry: BasicGeometry
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
uiff: uiff(P;Q)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
basic-geometry-: BasicGeometry-
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
prop: ℙ
, 
euclidean-plane: EuclideanPlane
, 
basic-geometry: BasicGeometry
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
geo-add-length: p + q
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
quotient: x,y:A//B[x; y]
, 
geo-length-type: Length
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
geo-eq_weakening, 
geo-congruent_functionality, 
geo-congruent-refl, 
geo-congruent-iff-length, 
geo-sep-O-X, 
geo-construction-unicity, 
geo-congruent_wf, 
geo-extend_wf, 
geo-Op-sep, 
geo-sep_wf, 
subtype_rel_sets_simple, 
geo-extend-property, 
geo-length-type_wf, 
geo-add-length_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-add-length_wf1, 
basic-geometry-_wf, 
subtype_rel_self, 
geo-eq_transitivity, 
geo-length-equiv, 
geo-eq_wf, 
geo-X_wf, 
geo-O_wf, 
geo-between_wf, 
geo-point_wf, 
quotient-member-eq
Rules used in proof : 
dependent_set_memberEquality_alt, 
lambdaFormation_alt, 
isectIsTypeImplies, 
axiomEquality, 
isect_memberEquality_alt, 
setIsType, 
sqequalBase, 
universeIsType, 
equalityIstype, 
productIsType, 
applyLambdaEquality, 
instantiate, 
independent_functionElimination, 
independent_isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
inhabitedIsType, 
lambdaEquality_alt, 
rename, 
setElimination, 
dependent_functionElimination, 
applyEquality, 
hypothesisEquality, 
setEquality, 
isectElimination, 
extract_by_obid, 
productElimination, 
thin, 
promote_hyp, 
pertypeElimination, 
sqequalRule, 
hypothesis, 
because_Cache, 
pointwiseFunctionalityForEquality, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[x,y,z:Length].    x  =  y  supposing  z  +  x  =  z  +  y
Date html generated:
2019_10_29-AM-09_14_12
Last ObjectModification:
2019_10_18-PM-03_16_39
Theory : euclidean!plane!geometry
Home
Index