Nuprl Lemma : geo-colinear-cases
∀e:BasicGeometry-
  ∀[a,b,c:Point].
    ∀X:ℙ
      (Stable{X}
      
⇒ (a ≡ b 
⇒ X)
      
⇒ (b ≡ c 
⇒ X)
      
⇒ (c ≡ a 
⇒ X)
      
⇒ (a-b-c 
⇒ X)
      
⇒ (b-c-a 
⇒ X)
      
⇒ (c-a-b 
⇒ X)
      
⇒ ((¬Colinear(a;b;c)) 
⇒ X)
      
⇒ X)
Proof
Definitions occuring in Statement : 
basic-geometry-: BasicGeometry-
, 
geo-colinear: Colinear(a;b;c)
, 
geo-strict-between: a-b-c
, 
geo-eq: a ≡ b
, 
geo-point: Point
, 
stable: Stable{P}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
true: True
, 
or: P ∨ Q
, 
false: False
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
not: ¬A
, 
uimplies: b supposing a
, 
stable: Stable{P}
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
geo-eq: a ≡ b
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
geo-strict-between: a-b-c
Lemmas referenced : 
minimal-not-not-excluded-middle, 
minimal-double-negation-hyp-elim, 
true_wf, 
or_wf, 
false_wf, 
geo-point_wf, 
stable_wf, 
geo-eq_wf, 
geo-strict-between_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
basic-geometry-_wf, 
subtype_rel_transitivity, 
basic-geometry--subtype, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-colinear_wf, 
not_wf, 
geo-simple-colinear-cases, 
geo-sep_wf, 
stable__false, 
geo-between_wf
Rules used in proof : 
natural_numberEquality, 
unionElimination, 
voidElimination, 
universeEquality, 
because_Cache, 
sqequalRule, 
instantiate, 
applyEquality, 
functionEquality, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberFormation, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut, 
independent_pairFormation
Latex:
\mforall{}e:BasicGeometry-
    \mforall{}[a,b,c:Point].
        \mforall{}X:\mBbbP{}
            (Stable\{X\}
            {}\mRightarrow{}  (a  \mequiv{}  b  {}\mRightarrow{}  X)
            {}\mRightarrow{}  (b  \mequiv{}  c  {}\mRightarrow{}  X)
            {}\mRightarrow{}  (c  \mequiv{}  a  {}\mRightarrow{}  X)
            {}\mRightarrow{}  (a-b-c  {}\mRightarrow{}  X)
            {}\mRightarrow{}  (b-c-a  {}\mRightarrow{}  X)
            {}\mRightarrow{}  (c-a-b  {}\mRightarrow{}  X)
            {}\mRightarrow{}  ((\mneg{}Colinear(a;b;c))  {}\mRightarrow{}  X)
            {}\mRightarrow{}  X)
Date html generated:
2017_10_02-PM-04_43_44
Last ObjectModification:
2017_08_07-PM-00_25_05
Theory : euclidean!plane!geometry
Home
Index