Nuprl Lemma : geo-colinear-cases

e:BasicGeometry-
  ∀[a,b,c:Point].
    ∀X:ℙ
      (Stable{X}
       (a ≡  X)
       (b ≡  X)
       (c ≡  X)
       (a-b-c  X)
       (b-c-a  X)
       (c-a-b  X)
       ((¬Colinear(a;b;c))  X)
       X)


Proof




Definitions occuring in Statement :  basic-geometry-: BasicGeometry- geo-colinear: Colinear(a;b;c) geo-strict-between: a-b-c geo-eq: a ≡ b geo-point: Point stable: Stable{P} uall: [x:A]. B[x] prop: all: x:A. B[x] not: ¬A implies:  Q
Definitions unfolded in proof :  true: True or: P ∨ Q false: False guard: {T} subtype_rel: A ⊆B prop: not: ¬A uimplies: supposing a stable: Stable{P} implies:  Q member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] geo-eq: a ≡ b cand: c∧ B and: P ∧ Q geo-strict-between: a-b-c
Lemmas referenced :  minimal-not-not-excluded-middle minimal-double-negation-hyp-elim true_wf or_wf false_wf geo-point_wf stable_wf geo-eq_wf geo-strict-between_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf basic-geometry-_wf subtype_rel_transitivity basic-geometry--subtype euclidean-plane-subtype euclidean-plane-structure-subtype geo-colinear_wf not_wf geo-simple-colinear-cases geo-sep_wf stable__false geo-between_wf
Rules used in proof :  natural_numberEquality unionElimination voidElimination universeEquality because_Cache sqequalRule instantiate applyEquality functionEquality independent_isectElimination independent_functionElimination dependent_functionElimination isect_memberFormation hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut independent_pairFormation

Latex:
\mforall{}e:BasicGeometry-
    \mforall{}[a,b,c:Point].
        \mforall{}X:\mBbbP{}
            (Stable\{X\}
            {}\mRightarrow{}  (a  \mequiv{}  b  {}\mRightarrow{}  X)
            {}\mRightarrow{}  (b  \mequiv{}  c  {}\mRightarrow{}  X)
            {}\mRightarrow{}  (c  \mequiv{}  a  {}\mRightarrow{}  X)
            {}\mRightarrow{}  (a-b-c  {}\mRightarrow{}  X)
            {}\mRightarrow{}  (b-c-a  {}\mRightarrow{}  X)
            {}\mRightarrow{}  (c-a-b  {}\mRightarrow{}  X)
            {}\mRightarrow{}  ((\mneg{}Colinear(a;b;c))  {}\mRightarrow{}  X)
            {}\mRightarrow{}  X)



Date html generated: 2017_10_02-PM-04_43_44
Last ObjectModification: 2017_08_07-PM-00_25_05

Theory : euclidean!plane!geometry


Home Index