Nuprl Lemma : geo-colinear-out-cases

[e:BasicGeometry-]. ∀[a,b,c:Point].  ∀X:ℙ(Stable{X}  Colinear(a;b;c)  (out(a bc)  X)  (c_a_b  X)  X)


Proof




Definitions occuring in Statement :  geo-out: out(p ab) basic-geometry-: BasicGeometry- geo-colinear: Colinear(a;b;c) geo-between: a_b_c geo-point: Point stable: Stable{P} uall: [x:A]. B[x] prop: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q basic-geometry-: BasicGeometry- stable: Stable{P} not: ¬A or: P ∨ Q false: False
Lemmas referenced :  geo-simple-colinear-cases geo-between_wf geo-out_wf euclidean-plane-subtype-basic basic-geometry--subtype subtype_rel_transitivity basic-geometry-_wf euclidean-plane_wf basic-geometry_wf geo-colinear_wf stable_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype euclidean-plane-structure_wf geo-primitives_wf false_wf or_wf not_wf geo-colinear-not-out geo-between-symmetry minimal-double-negation-hyp-elim minimal-not-not-excluded-middle
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation dependent_functionElimination independent_functionElimination functionEquality applyEquality because_Cache sqequalRule instantiate independent_isectElimination universeEquality productElimination unionElimination voidElimination

Latex:
\mforall{}[e:BasicGeometry-].  \mforall{}[a,b,c:Point].
    \mforall{}X:\mBbbP{}.  (Stable\{X\}  {}\mRightarrow{}  Colinear(a;b;c)  {}\mRightarrow{}  (out(a  bc)  {}\mRightarrow{}  X)  {}\mRightarrow{}  (c\_a\_b  {}\mRightarrow{}  X)  {}\mRightarrow{}  X)



Date html generated: 2018_05_22-AM-11_58_35
Last ObjectModification: 2018_04_19-PM-01_49_48

Theory : euclidean!plane!geometry


Home Index