Nuprl Lemma : geo-congruent-comm

e:EuclideanPlane. ∀[a,b,c,d:Point].  ba ≅ dc supposing ab ≅ cd


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-congruent: ab ≅ cd geo-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  guard: {T} subtype_rel: A ⊆B prop: member: t ∈ T uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  geo-point_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-congruent_wf geo-congruent-right-comm geo-congruent-left-comm
Rules used in proof :  sqequalRule instantiate applyEquality because_Cache hypothesis independent_isectElimination isectElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,d:Point].    ba  \00D0  dc  supposing  ab  \00D0  cd



Date html generated: 2017_10_02-PM-03_28_49
Last ObjectModification: 2017_08_04-PM-09_29_50

Theory : euclidean!plane!geometry


Home Index