Nuprl Lemma : geo-congruent-comm
∀e:EuclideanPlane. ∀[a,b,c,d:Point].  ba ≅ dc supposing ab ≅ cd
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-point_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-congruent_wf, 
geo-congruent-right-comm, 
geo-congruent-left-comm
Rules used in proof : 
sqequalRule, 
instantiate, 
applyEquality, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
isectElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,d:Point].    ba  \00D0  dc  supposing  ab  \00D0  cd
Date html generated:
2017_10_02-PM-03_28_49
Last ObjectModification:
2017_08_04-PM-09_29_50
Theory : euclidean!plane!geometry
Home
Index