Nuprl Lemma : geo-eqt

e:BasicGeometry. ∀a,b,c:{p:Point| O_X_p} .
  (((a b ∈ {p:Point| O_X_p} ) ∧ (b c ∈ {p:Point| O_X_p} ))  (a c ∈ {p:Point| O_X_p} ))


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry geo-X: X geo-O: O geo-between: a_b_c geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] basic-geometry: BasicGeometry uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T and: P ∧ Q implies:  Q all: x:A. B[x]
Lemmas referenced :  set_wf geo-X_wf geo-O_wf geo-between_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-point_wf equal_wf
Rules used in proof :  lambdaEquality dependent_set_memberEquality rename setElimination dependent_functionElimination because_Cache sqequalRule independent_isectElimination instantiate applyEquality hypothesisEquality setEquality isectElimination extract_by_obid introduction productEquality hypothesis equalityTransitivity thin productElimination sqequalHypSubstitution cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c:\{p:Point|  O\_X\_p\}  .    (((a  =  b)  \mwedge{}  (b  =  c))  {}\mRightarrow{}  (a  =  c))



Date html generated: 2017_10_02-PM-06_36_27
Last ObjectModification: 2017_08_05-PM-04_45_27

Theory : euclidean!plane!geometry


Home Index