Nuprl Lemma : geo-equilateral_wf
∀[g1:EuclideanPlaneStructure]. ∀[a,b,c:Point].  (EQΔ(a;b;c) ∈ ℙ)
Proof
Definitions occuring in Statement : 
geo-equilateral: EQΔ(a;b;c)
, 
euclidean-plane-structure: EuclideanPlaneStructure
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
prop: ℙ
, 
geo-equilateral: EQΔ(a;b;c)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
euclidean-plane-structure_wf, 
geo-point_wf, 
geo-lsep_wf, 
euclidean-plane-structure-subtype, 
geo-congruent_wf
Rules used in proof : 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
because_Cache, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
productEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[g1:EuclideanPlaneStructure].  \mforall{}[a,b,c:Point].    (EQ\mDelta{}(a;b;c)  \mmember{}  \mBbbP{})
Date html generated:
2017_10_02-PM-04_41_50
Last ObjectModification:
2017_08_05-AM-08_26_36
Theory : euclidean!plane!geometry
Home
Index