Nuprl Lemma : geo-gt-not-congruent
∀g:EuclideanPlane. ∀a,b,c,d:Point.  (ab > cd 
⇒ (¬ab ≅ cd))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-gt: cd > ab
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
geo-gt: cd > ab
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
basic-geometry: BasicGeometry
, 
uall: ∀[x:A]. B[x]
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
geo-eq: a ≡ b
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
geo-between-congruent, 
geo-congruent-iff-length, 
geo-sep-sym, 
geo-congruent_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-gt_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
sqequalHypSubstitution, 
imageElimination, 
productElimination, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
sqequalRule, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
isectElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
universeIsType, 
applyEquality, 
instantiate, 
inhabitedIsType
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (ab  >  cd  {}\mRightarrow{}  (\mneg{}ab  \mcong{}  cd))
Date html generated:
2019_10_16-PM-01_39_35
Last ObjectModification:
2019_07_16-PM-01_31_22
Theory : euclidean!plane!geometry
Home
Index