Nuprl Lemma : geo-interior-point_wf
∀[e:EuclideanPlane]. ∀[a,b,c,d:Point].  (I(abc;d) ∈ ℙ)
Proof
Definitions occuring in Statement : 
geo-interior-point: I(abc;d)
, 
euclidean-plane: EuclideanPlane
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
geo-interior-point: I(abc;d)
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
geo-left_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType, 
instantiate, 
independent_isectElimination
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a,b,c,d:Point].    (I(abc;d)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_16-PM-02_20_19
Last ObjectModification:
2019_03_19-PM-04_50_07
Theory : euclidean!plane!geometry
Home
Index