Nuprl Lemma : geo-interior-point_wf

[e:EuclideanPlane]. ∀[a,b,c,d:Point].  (I(abc;d) ∈ ℙ)


Proof




Definitions occuring in Statement :  geo-interior-point: I(abc;d) euclidean-plane: EuclideanPlane geo-point: Point uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T geo-interior-point: I(abc;d) prop: and: P ∧ Q subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  geo-left_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule productEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality because_Cache hypothesis axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType instantiate independent_isectElimination

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a,b,c,d:Point].    (I(abc;d)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_16-PM-02_20_19
Last ObjectModification: 2019_03_19-PM-04_50_07

Theory : euclidean!plane!geometry


Home Index