Nuprl Lemma : geo-not-not-colinear
∀e:BasicGeometry. ∀[a,b,c:Point].  (¬¬Colinear(a;b;c) 
⇐⇒ ¬¬(a_b_c ∨ b_c_a ∨ c_a_b))
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-colinear: Colinear(a;b;c)
, 
geo-between: a_b_c
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
or: P ∨ Q
Definitions unfolded in proof : 
false: False
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
basic-geometry: BasicGeometry
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
geo-point_wf, 
iff_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-between_wf, 
or_wf, 
geo-not-colinear, 
geo-colinear_wf, 
not_wf
Rules used in proof : 
voidElimination, 
isect_memberEquality, 
lambdaEquality, 
independent_pairEquality, 
isect_memberFormation, 
impliesLevelFunctionality, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
independent_functionElimination, 
dependent_functionElimination, 
impliesFunctionality, 
productElimination, 
addLevel, 
because_Cache, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
hypothesis, 
lambdaFormation, 
independent_pairFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
cut
Latex:
\mforall{}e:BasicGeometry.  \mforall{}[a,b,c:Point].    (\mneg{}\mneg{}Colinear(a;b;c)  \mLeftarrow{}{}\mRightarrow{}  \mneg{}\mneg{}(a\_b\_c  \mvee{}  b\_c\_a  \mvee{}  c\_a\_b))
Date html generated:
2017_10_02-PM-04_43_11
Last ObjectModification:
2017_08_05-AM-08_42_42
Theory : euclidean!plane!geometry
Home
Index