Nuprl Lemma : geo-not-not-colinear

e:BasicGeometry. ∀[a,b,c:Point].  (¬¬Colinear(a;b;c) ⇐⇒ ¬¬(a_b_c ∨ b_c_a ∨ c_a_b))


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry geo-colinear: Colinear(a;b;c) geo-between: a_b_c geo-point: Point uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A or: P ∨ Q
Definitions unfolded in proof :  false: False or: P ∨ Q uimplies: supposing a guard: {T} subtype_rel: A ⊆B all: x:A. B[x] not: ¬A rev_implies:  Q basic-geometry: BasicGeometry uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q
Lemmas referenced :  geo-point_wf iff_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-between_wf or_wf geo-not-colinear geo-colinear_wf not_wf
Rules used in proof :  voidElimination isect_memberEquality lambdaEquality independent_pairEquality isect_memberFormation impliesLevelFunctionality sqequalRule independent_isectElimination instantiate applyEquality independent_functionElimination dependent_functionElimination impliesFunctionality productElimination addLevel because_Cache hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid introduction hypothesis lambdaFormation independent_pairFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution cut

Latex:
\mforall{}e:BasicGeometry.  \mforall{}[a,b,c:Point].    (\mneg{}\mneg{}Colinear(a;b;c)  \mLeftarrow{}{}\mRightarrow{}  \mneg{}\mneg{}(a\_b\_c  \mvee{}  b\_c\_a  \mvee{}  c\_a\_b))



Date html generated: 2017_10_02-PM-04_43_11
Last ObjectModification: 2017_08_05-AM-08_42_42

Theory : euclidean!plane!geometry


Home Index