Nuprl Lemma : geo-opp-side_wf

[e:BasicGeometry]. ∀[A,B,P,Q:Point].  (P-AB-Q ∈ ℙ)


Proof




Definitions occuring in Statement :  geo-opp-side: P-AB-Q basic-geometry: BasicGeometry geo-point: Point uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] so_apply: x[s] basic-geometry: BasicGeometry implies:  Q so_lambda: λ2x.t[x] uimplies: supposing a guard: {T} subtype_rel: A ⊆B and: P ∧ Q prop: geo-opp-side: P-AB-Q member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  geo-colinear_wf geo-between_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-point_wf all_wf not_wf
Rules used in proof :  isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality rename setElimination because_Cache functionEquality lambdaEquality independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid productEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[A,B,P,Q:Point].    (P-AB-Q  \mmember{}  \mBbbP{})



Date html generated: 2017_10_02-PM-06_21_28
Last ObjectModification: 2017_08_05-PM-04_16_00

Theory : euclidean!plane!geometry


Home Index