Nuprl Lemma : geo-out2-bet-out
∀e:BasicGeometry. ∀a,b,c,x,p:Point.  (out(b ac) 
⇒ out(b xp) 
⇒ a_x_c 
⇒ {out(b ap) ∧ out(b cp)})
Proof
Definitions occuring in Statement : 
geo-out: out(p ab)
, 
basic-geometry: BasicGeometry
, 
geo-between: a_b_c
, 
geo-point: Point
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
uimplies: b supposing a
, 
false: False
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
not: ¬A
, 
guard: {T}
, 
and: P ∧ Q
, 
geo-out: out(p ab)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
Lemmas referenced : 
geo-point_wf, 
geo-out_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
not_wf, 
geo-between_wf, 
geo-between-exchange4, 
geo-between-exchange3, 
geo-between-inner-trans, 
geo-between-symmetry, 
geo-between-same-side, 
geo-between-middle
Rules used in proof : 
independent_isectElimination, 
instantiate, 
productEquality, 
voidElimination, 
sqequalRule, 
because_Cache, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
independent_functionElimination, 
hypothesis, 
independent_pairFormation, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
dependent_functionElimination
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,x,p:Point.    (out(b  ac)  {}\mRightarrow{}  out(b  xp)  {}\mRightarrow{}  a\_x\_c  {}\mRightarrow{}  \{out(b  ap)  \mwedge{}  out(b  cp)\})
Date html generated:
2017_10_02-PM-06_27_28
Last ObjectModification:
2017_08_05-PM-04_20_46
Theory : euclidean!plane!geometry
Home
Index