Nuprl Lemma : geo-parallel-refl

e:EuclideanPlane. ∀a,b,c,d:Point.  (geo-parallel(e;a;b;c;d)  geo-parallel(e;a;b;c;d))


Proof




Definitions occuring in Statement :  geo-parallel: geo-parallel(e;a;b;c;d) euclidean-plane: EuclideanPlane geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  geo-parallel_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination applyEquality instantiate independent_isectElimination sqequalRule because_Cache

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (geo-parallel(e;a;b;c;d)  {}\mRightarrow{}  geo-parallel(e;a;b;c;d))



Date html generated: 2018_05_22-PM-00_13_49
Last ObjectModification: 2017_10_12-AM-11_13_04

Theory : euclidean!plane!geometry


Home Index