Nuprl Lemma : geo-parallel_wf
∀e:EuclideanPlane. ∀a,b,c,d:Point.  (geo-parallel(e;a;b;c;d) ∈ ℙ)
Proof
Definitions occuring in Statement : 
geo-parallel: geo-parallel(e;a;b;c;d)
, 
euclidean-plane: EuclideanPlane
, 
geo-point: Point
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
geo-parallel: geo-parallel(e;a;b;c;d)
, 
prop: ℙ
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
Lemmas referenced : 
geo-sep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
all_wf, 
geo-point_wf, 
geo-colinear_wf, 
geo-lsep_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
productEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
because_Cache, 
lambdaEquality, 
functionEquality
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (geo-parallel(e;a;b;c;d)  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-PM-00_13_10
Last ObjectModification:
2017_10_12-AM-11_07_17
Theory : euclidean!plane!geometry
Home
Index