Nuprl Lemma : geo-parallel_wf

e:EuclideanPlane. ∀a,b,c,d:Point.  (geo-parallel(e;a;b;c;d) ∈ ℙ)


Proof




Definitions occuring in Statement :  geo-parallel: geo-parallel(e;a;b;c;d) euclidean-plane: EuclideanPlane geo-point: Point prop: all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T geo-parallel: geo-parallel(e;a;b;c;d) prop: and: P ∧ Q uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] implies:  Q so_apply: x[s]
Lemmas referenced :  geo-sep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf all_wf geo-point_wf geo-colinear_wf geo-lsep_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule productEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination because_Cache lambdaEquality functionEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (geo-parallel(e;a;b;c;d)  \mmember{}  \mBbbP{})



Date html generated: 2018_05_22-PM-00_13_10
Last ObjectModification: 2017_10_12-AM-11_07_17

Theory : euclidean!plane!geometry


Home Index