Nuprl Lemma : geo-perp-in-symmetry1

e:BasicGeometry. ∀x:Point.  ∀[a,b,c,d:Point].  (ab  ⊥cd  cd  ⊥ab)


Proof




Definitions occuring in Statement :  geo-perp-in: ab  ⊥cd basic-geometry: BasicGeometry geo-point: Point uall: [x:A]. B[x] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q geo-perp-in: ab  ⊥cd and: P ∧ Q cand: c∧ B member: t ∈ T prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  right-angle-symmetry geo-colinear_wf geo-perp-in_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation sqequalHypSubstitution productElimination thin cut hypothesis independent_pairFormation dependent_functionElimination hypothesisEquality independent_functionElimination introduction extract_by_obid isectElimination applyEquality because_Cache sqequalRule instantiate independent_isectElimination

Latex:
\mforall{}e:BasicGeometry.  \mforall{}x:Point.    \mforall{}[a,b,c,d:Point].    (ab    \mbot{}x  cd  {}\mRightarrow{}  cd    \mbot{}x  ab)



Date html generated: 2018_05_22-PM-00_04_06
Last ObjectModification: 2018_04_18-PM-09_47_08

Theory : euclidean!plane!geometry


Home Index