Nuprl Lemma : geo-playfair-axiom

e:EuclideanParPlane. ∀p:Point. ∀l,m,n:Line.  ((p m ∧ || l)  (p n ∧ || l)  m ≡ n)


Proof




Definitions occuring in Statement :  euclidean-parallel-plane: EuclideanParPlane geo-Aparallel: || m geo-incident: L geo-line-eq: l ≡ m geo-line: Line geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  Playfair-axiom: Playfair-axiom(e) all: x:A. B[x] euclidean-parallel-plane: EuclideanParPlane uall: [x:A]. B[x] member: t ∈ T implies:  Q sq_stable: SqStable(P) squash: T
Lemmas referenced :  sq_stable__from_stable Playfair-axiom_wf stable__Playfair-axiom euclidean-parallel-plane_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation sqequalHypSubstitution setElimination thin rename cut introduction extract_by_obid isectElimination dependent_functionElimination hypothesisEquality hypothesis independent_functionElimination imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}e:EuclideanParPlane.  \mforall{}p:Point.  \mforall{}l,m,n:Line.    ((p  I  m  \mwedge{}  m  ||  l)  {}\mRightarrow{}  (p  I  n  \mwedge{}  n  ||  l)  {}\mRightarrow{}  m  \mequiv{}  n)



Date html generated: 2018_05_22-PM-01_09_28
Last ObjectModification: 2018_05_11-PM-10_49_49

Theory : euclidean!plane!geometry


Home Index