Nuprl Lemma : geo-playfair-axiom
∀e:EuclideanParPlane. ∀p:Point. ∀l,m,n:Line.  ((p I m ∧ m || l) 
⇒ (p I n ∧ n || l) 
⇒ m ≡ n)
Proof
Definitions occuring in Statement : 
euclidean-parallel-plane: EuclideanParPlane
, 
geo-Aparallel: l || m
, 
geo-incident: p I L
, 
geo-line-eq: l ≡ m
, 
geo-line: Line
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
Playfair-axiom: Playfair-axiom(e)
, 
all: ∀x:A. B[x]
, 
euclidean-parallel-plane: EuclideanParPlane
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
sq_stable__from_stable, 
Playfair-axiom_wf, 
stable__Playfair-axiom, 
euclidean-parallel-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}e:EuclideanParPlane.  \mforall{}p:Point.  \mforall{}l,m,n:Line.    ((p  I  m  \mwedge{}  m  ||  l)  {}\mRightarrow{}  (p  I  n  \mwedge{}  n  ||  l)  {}\mRightarrow{}  m  \mequiv{}  n)
Date html generated:
2018_05_22-PM-01_09_28
Last ObjectModification:
2018_05_11-PM-10_49_49
Theory : euclidean!plane!geometry
Home
Index