Nuprl Lemma : stable__Playfair-axiom
∀g:EuclideanPlane. Stable{Playfair-axiom(g)}
Proof
Definitions occuring in Statement : 
Playfair-axiom: Playfair-axiom(e)
, 
euclidean-plane: EuclideanPlane
, 
stable: Stable{P}
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
Playfair-axiom: Playfair-axiom(e)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
so_apply: x[s]
, 
geo-line-eq: l ≡ m
Lemmas referenced : 
euclidean-plane_wf, 
stable__all, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
all_wf, 
geo-line_wf, 
geo-incident_wf, 
geoline-subtype1, 
geo-Aparallel_wf, 
geo-line-eq_wf, 
stable__implies, 
stable__not, 
geo-line-sep_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
functionEquality, 
productEquality, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}g:EuclideanPlane.  Stable\{Playfair-axiom(g)\}
Date html generated:
2018_05_22-PM-01_08_32
Last ObjectModification:
2018_05_11-PM-10_49_35
Theory : euclidean!plane!geometry
Home
Index