Nuprl Lemma : stable__Playfair-axiom

g:EuclideanPlane. Stable{Playfair-axiom(g)}


Proof




Definitions occuring in Statement :  Playfair-axiom: Playfair-axiom(e) euclidean-plane: EuclideanPlane stable: Stable{P} all: x:A. B[x]
Definitions unfolded in proof :  Playfair-axiom: Playfair-axiom(e) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] implies:  Q prop: and: P ∧ Q cand: c∧ B so_apply: x[s] geo-line-eq: l ≡ m
Lemmas referenced :  euclidean-plane_wf stable__all geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane-structure_wf geo-primitives_wf all_wf geo-line_wf geo-incident_wf geoline-subtype1 geo-Aparallel_wf geo-line-eq_wf stable__implies stable__not geo-line-sep_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality instantiate independent_isectElimination lambdaEquality dependent_functionElimination because_Cache functionEquality productEquality productElimination independent_functionElimination

Latex:
\mforall{}g:EuclideanPlane.  Stable\{Playfair-axiom(g)\}



Date html generated: 2018_05_22-PM-01_08_32
Last ObjectModification: 2018_05_11-PM-10_49_35

Theory : euclidean!plane!geometry


Home Index