Nuprl Lemma : geo-seg-proper_wf
∀[e:EuclideanPlaneStructure]. ∀[s:geo-segment(e)].  (geo-seg-proper(e; s) ∈ ℙ)
Proof
Definitions occuring in Statement : 
geo-seg-proper: geo-seg-proper(e; s)
, 
geo-segment: geo-segment(e)
, 
euclidean-plane-structure: EuclideanPlaneStructure
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
geo-seg-proper: geo-seg-proper(e; s)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
euclidean-plane-structure_wf, 
geo-segment_wf, 
geo-seg2_wf, 
geo-seg1_wf, 
euclidean-plane-structure-subtype, 
geo-sep_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[e:EuclideanPlaneStructure].  \mforall{}[s:geo-segment(e)].    (geo-seg-proper(e;  s)  \mmember{}  \mBbbP{})
Date html generated:
2017_10_02-PM-04_44_31
Last ObjectModification:
2017_08_05-AM-09_26_35
Theory : euclidean!plane!geometry
Home
Index