Nuprl Lemma : geo-segments-cross

e:HeytingGeometry. ∀p,b,q,a:Point.  ((∃c:Point. (a-p-c ∧ b-q-c ∧ ab))  (∃x:Point. (p-x-b ∧ q-x-a)))


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-strict-between: a-b-c geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] uimplies: supposing a guard: {T} cand: c∧ B prop: subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q exists: x:A. B[x] implies:  Q all: x:A. B[x]
Lemmas referenced :  geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf heyting-geometry_wf subtype_rel_transitivity heyting-geometry-subtype euclidean-plane-subtype euclidean-plane-structure-subtype geo-point_wf exists_wf geo-strict-between_wf geo-strict-between-sym geo-triangle_wf geo-inner-pasch-ex
Rules used in proof :  lambdaEquality independent_isectElimination instantiate productEquality independent_pairFormation dependent_pairFormation independent_functionElimination sqequalRule applyEquality isectElimination hypothesis dependent_set_memberEquality because_Cache hypothesisEquality dependent_functionElimination extract_by_obid introduction cut thin productElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}p,b,q,a:Point.
    ((\mexists{}c:Point.  (a-p-c  \mwedge{}  b-q-c  \mwedge{}  c  \#  ab))  {}\mRightarrow{}  (\mexists{}x:Point.  (p-x-b  \mwedge{}  q-x-a)))



Date html generated: 2017_10_02-PM-07_03_02
Last ObjectModification: 2017_08_06-PM-10_18_51

Theory : euclidean!plane!geometry


Home Index