Nuprl Lemma : geo-segments-cross
∀e:HeytingGeometry. ∀p,b,q,a:Point.  ((∃c:Point. (a-p-c ∧ b-q-c ∧ c # ab)) 
⇒ (∃x:Point. (p-x-b ∧ q-x-a)))
Proof
Definitions occuring in Statement : 
geo-triangle: a # bc
, 
heyting-geometry: HeytingGeometry
, 
geo-strict-between: a-b-c
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
cand: A c∧ B
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
heyting-geometry_wf, 
subtype_rel_transitivity, 
heyting-geometry-subtype, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-point_wf, 
exists_wf, 
geo-strict-between_wf, 
geo-strict-between-sym, 
geo-triangle_wf, 
geo-inner-pasch-ex
Rules used in proof : 
lambdaEquality, 
independent_isectElimination, 
instantiate, 
productEquality, 
independent_pairFormation, 
dependent_pairFormation, 
independent_functionElimination, 
sqequalRule, 
applyEquality, 
isectElimination, 
hypothesis, 
dependent_set_memberEquality, 
because_Cache, 
hypothesisEquality, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:HeytingGeometry.  \mforall{}p,b,q,a:Point.
    ((\mexists{}c:Point.  (a-p-c  \mwedge{}  b-q-c  \mwedge{}  c  \#  ab))  {}\mRightarrow{}  (\mexists{}x:Point.  (p-x-b  \mwedge{}  q-x-a)))
Date html generated:
2017_10_02-PM-07_03_02
Last ObjectModification:
2017_08_06-PM-10_18_51
Theory : euclidean!plane!geometry
Home
Index