Nuprl Lemma : geo-strict-between_functionality
∀e:BasicGeometry. ∀a1,a2,b1,b2,c1,c2:Point.  (a1 ≡ a2 
⇒ b1 ≡ b2 
⇒ c1 ≡ c2 
⇒ (a1-b1-c1 
⇐⇒ a2-b2-c2))
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-strict-between: a-b-c
, 
geo-eq: a ≡ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
geo-strict-between: a-b-c
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
Lemmas referenced : 
basic-geometry_wf, 
geo-point_wf, 
geo-eq_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-strict-between_wf, 
geo-sep_wf, 
geo-between_wf, 
geo-sep_functionality, 
geo-between_functionality, 
geo-eq_inversion
Rules used in proof : 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
andLevelFunctionality, 
promote_hyp, 
levelHypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
independent_pairFormation, 
productElimination, 
addLevel
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a1,a2,b1,b2,c1,c2:Point.
    (a1  \mequiv{}  a2  {}\mRightarrow{}  b1  \mequiv{}  b2  {}\mRightarrow{}  c1  \mequiv{}  c2  {}\mRightarrow{}  (a1-b1-c1  \mLeftarrow{}{}\mRightarrow{}  a2-b2-c2))
Date html generated:
2017_10_02-PM-04_42_54
Last ObjectModification:
2017_08_05-AM-08_42_20
Theory : euclidean!plane!geometry
Home
Index