Nuprl Lemma : half-plane-point-exists

g:EuclideanPlane. ∀x,y:Point.  (x ≠  (∃q:Point. leftof xy))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-left: leftof bc geo-sep: a ≠ b geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: sq_exists: x:A [B[x]] and: P ∧ Q guard: {T} uimplies: supposing a euclidean-plane: EuclideanPlane sq_stable: SqStable(P) squash: T exists: x:A. B[x]
Lemmas referenced :  Euclid-Prop1-left geo-sep_wf sq_stable__and geo-congruent_wf geo-left_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf sq_stable__geo-congruent sq_stable__geo-left geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality dependent_set_memberEquality_alt hypothesis universeIsType isectElimination applyEquality because_Cache sqequalRule setElimination rename productEquality productElimination isect_memberEquality_alt instantiate independent_isectElimination productIsType inhabitedIsType independent_functionElimination imageMemberEquality baseClosed imageElimination dependent_pairFormation_alt

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}x,y:Point.    (x  \mneq{}  y  {}\mRightarrow{}  (\mexists{}q:Point.  q  leftof  xy))



Date html generated: 2019_10_16-PM-01_48_35
Last ObjectModification: 2018_11_05-PM-09_17_41

Theory : euclidean!plane!geometry


Home Index