Nuprl Lemma : hp-angle-sum-subst1
∀g:EuclideanPlane. ∀a,b,c,d,e,f,x,y,z,i,j,k:Point.  (abc + def ≅ xyz 
⇒ def ≅a ijk 
⇒ abc + ijk ≅ xyz)
Proof
Definitions occuring in Statement : 
hp-angle-sum: abc + xyz ≅ def
, 
geo-cong-angle: abc ≅a xyz
, 
euclidean-plane: EuclideanPlane
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
hp-angle-sum: abc + xyz ≅ def
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
cand: A c∧ B
, 
basic-geometry: BasicGeometry
, 
geo-out: out(p ab)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
geo-cong-angle: abc ≅a xyz
Lemmas referenced : 
geo-cong-angle-transitivity, 
euclidean-plane-axioms, 
geo-cong-angle-symm2, 
geo-cong-angle_wf, 
geo-out_wf, 
geo-strict-between_wf, 
geo-between_wf, 
hp-angle-sum_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation_alt, 
hypothesisEquality, 
cut, 
hypothesis, 
independent_pairFormation, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
sqequalRule, 
independent_functionElimination, 
because_Cache, 
productIsType, 
inhabitedIsType, 
universeIsType, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d,e,f,x,y,z,i,j,k:Point.
    (abc  +  def  \mcong{}  xyz  {}\mRightarrow{}  def  \mcong{}\msuba{}  ijk  {}\mRightarrow{}  abc  +  ijk  \mcong{}  xyz)
Date html generated:
2019_10_16-PM-02_06_18
Last ObjectModification:
2019_06_05-AM-09_37_26
Theory : euclidean!plane!geometry
Home
Index