Nuprl Lemma : hp-angle-sum-subst2

g:EuclideanPlane. ∀a,b,c,d,e,f,x,y,z,i,j,k:Point.  (abc def ≅ xyz  abc ≅a ijk  ijk def ≅ xyz)


Proof




Definitions occuring in Statement :  hp-angle-sum: abc xyz ≅ def geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B prop: basic-geometry: BasicGeometry uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] hp-angle-sum: abc xyz ≅ def cand: c∧ B and: P ∧ Q exists: x:A. B[x] geo-out: out(p ab) geo-cong-angle: abc ≅a xyz
Lemmas referenced :  geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-point_wf hp-angle-sum_wf geo-cong-angle_wf geo-sep_wf geo-between_wf geo-out_wf geo-cong-angle-symm2 euclidean-plane-axioms geo-cong-angle-transitivity
Rules used in proof :  independent_isectElimination instantiate applyEquality inhabitedIsType dependent_functionElimination hypothesis hypothesisEquality sqequalRule thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut universeIsType lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution because_Cache productIsType independent_pairFormation dependent_pairFormation_alt productElimination independent_functionElimination

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d,e,f,x,y,z,i,j,k:Point.
    (abc  +  def  \mcong{}  xyz  {}\mRightarrow{}  abc  \mcong{}\msuba{}  ijk  {}\mRightarrow{}  ijk  +  def  \mcong{}  xyz)



Date html generated: 2019_10_16-PM-02_07_08
Last ObjectModification: 2019_06_07-PM-05_35_44

Theory : euclidean!plane!geometry


Home Index