Nuprl Lemma : not-lt-zero-angle

e:EuclideanPlane. ∀a,b,c,x,y,z:Point.  (abc < xyz  (y_z_x ∨ y_x_z)  False)


Proof




Definitions occuring in Statement :  geo-lt-angle: abc < xyz euclidean-plane: EuclideanPlane geo-between: a_b_c geo-point: Point all: x:A. B[x] implies:  Q or: P ∨ Q false: False
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q false: False geo-lt-angle: abc < xyz and: P ∧ Q exists: x:A. B[x] or: P ∨ Q member: t ∈ T basic-geometry: BasicGeometry geo-out: out(p ab) not: ¬A uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop:
Lemmas referenced :  geo-out_inversion geo-between-out euclidean-plane-axioms geo-sep-sym geo-between_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-lt-angle_wf geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalHypSubstitution productElimination thin unionElimination introduction extract_by_obid dependent_functionElimination sqequalRule hypothesisEquality independent_functionElimination because_Cache hypothesis voidElimination unionIsType universeIsType isectElimination applyEquality instantiate independent_isectElimination inhabitedIsType

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.    (abc  <  xyz  {}\mRightarrow{}  (y\_z\_x  \mvee{}  y\_x\_z)  {}\mRightarrow{}  False)



Date html generated: 2019_10_16-PM-01_49_25
Last ObjectModification: 2019_09_27-PM-05_58_24

Theory : euclidean!plane!geometry


Home Index