Nuprl Lemma : pgeo-lsep-or

g:BasicProjectivePlane. ∀l,m,n:Line.  (l ≠  (l ≠ n ∨ n ≠ m))


Proof




Definitions occuring in Statement :  basic-projective-plane: BasicProjectivePlane pgeo-lsep: l ≠ m pgeo-line: Line all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: guard: {T} or: P ∨ Q basic-projective-plane: BasicProjectivePlane member: t ∈ T and: P ∧ Q exists: x:A. B[x] pgeo-lsep: l ≠ m implies:  Q all: x:A. B[x]
Lemmas referenced :  pgeo-line_wf pgeo-primitives_wf projective-plane-structure_wf basic-projective-plane_wf subtype_rel_transitivity basic-projective-plane-subtype projective-plane-structure_subtype pgeo-lsep_wf PL-sep-or pgeo-plsep-to-lsep
Rules used in proof :  independent_isectElimination instantiate because_Cache applyEquality isectElimination inrFormation sqequalRule unionElimination independent_functionElimination hypothesisEquality rename setElimination dependent_functionElimination extract_by_obid introduction thin productElimination sqequalHypSubstitution hypothesis cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution inlFormation

Latex:
\mforall{}g:BasicProjectivePlane.  \mforall{}l,m,n:Line.    (l  \mneq{}  m  {}\mRightarrow{}  (l  \mneq{}  n  \mvee{}  n  \mneq{}  m))



Date html generated: 2018_05_22-PM-00_43_16
Last ObjectModification: 2017_11_30-AM-06_49_34

Theory : euclidean!plane!geometry


Home Index