Nuprl Lemma : pgeo-meet-line-uniqueness

g:ProjectivePlane. ∀a,b:Point. ∀l,m:Line.  (a ≠  (a l ∧ m)  (b l ∧ m)  l ≡ m)


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-leq: a ≡ b pgeo-psep: a ≠ b pgeo-incident: b pgeo-line: Line pgeo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  false: False prop: not: ¬A pgeo-leq: a ≡ b cand: c∧ B uimplies: supposing a uall: [x:A]. B[x] subtype_rel: A ⊆B member: t ∈ T and: P ∧ Q implies:  Q all: x:A. B[x] pgeo-peq: a ≡ b
Lemmas referenced :  projective-plane_wf pgeo-point_wf pgeo-line_wf pgeo-psep_wf pgeo-incident_wf pgeo-lsep_wf pgeo-leq_wf pgeo-peq_wf projective-plane-subtype-basic Unique
Rules used in proof :  productEquality voidElimination because_Cache independent_functionElimination independent_pairFormation independent_isectElimination isectElimination sqequalRule hypothesis applyEquality hypothesisEquality dependent_functionElimination extract_by_obid introduction cut thin productElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:ProjectivePlane.  \mforall{}a,b:Point.  \mforall{}l,m:Line.    (a  \mneq{}  b  {}\mRightarrow{}  (a  I  l  \mwedge{}  a  I  m)  {}\mRightarrow{}  (b  I  l  \mwedge{}  b  I  m)  {}\mRightarrow{}  l  \mequiv{}  m)



Date html generated: 2018_05_22-PM-00_52_19
Last ObjectModification: 2018_01_03-PM-05_02_20

Theory : euclidean!plane!geometry


Home Index